崔科, 杨其彬, 马振华. 红鳍笛鲷仔、稚鱼摄食、消化与食物选择性研究[J]. 南方水产科学, 2018, 14(6): 43-51. DOI: 10.12131/20180114
引用本文: 崔科, 杨其彬, 马振华. 红鳍笛鲷仔、稚鱼摄食、消化与食物选择性研究[J]. 南方水产科学, 2018, 14(6): 43-51. DOI: 10.12131/20180114
CUI Ke, YANG Qibin, MA Zhenhua. Ingestion, digestion and food selection of crimson snapper(Lutjanus erythopterus) larvae and juveniles[J]. South China Fisheries Science, 2018, 14(6): 43-51. DOI: 10.12131/20180114
Citation: CUI Ke, YANG Qibin, MA Zhenhua. Ingestion, digestion and food selection of crimson snapper(Lutjanus erythopterus) larvae and juveniles[J]. South China Fisheries Science, 2018, 14(6): 43-51. DOI: 10.12131/20180114

红鳍笛鲷仔、稚鱼摄食、消化与食物选择性研究

Ingestion, digestion and food selection of crimson snapper(Lutjanus erythopterus) larvae and juveniles

  • 摘要: 为了探明仔、稚鱼阶段红鳍笛鲷(Lutjanus erythopterus)投喂轮虫的最适密度和颗粒饲料驯化时间,文章研究了不同轮虫投喂密度下,红鳍笛鲷仔鱼的生长、存活和食物选择,并采用生长、存活、RNA/DNA比率和消化道上皮细胞高度等参数作为评价指标,研究了颗粒饲料驯化时间 13 dph (孵化后天数,W13)、16 dph (W16)、19 dph (W19)和22 dph (W22) 对红鳍笛鲷仔、稚鱼的影响。结果表明,轮虫投喂密度显著影响红鳍笛鲷仔鱼的摄食、饵料选择、生长和存活,轮虫投喂密度为10~20 个·mL–1时,仔鱼的生长和成活率均无显著差异但显著高于1个·mL–1和30个·mL–1处理组。颗粒饲料驯化实验中,W19和W22处理组个体的生长和成活率显著高于其他两组,W13处理组个体的RNA/DNA比率最低。22 dph时,W13和W16处理组个体消化道上皮细胞高度明显低于其他两组。根据研究结果,轮虫和卤虫无节幼体混合喂养期间,轮虫密度对仔、稚鱼的食物选择性存在显著影响,建议在红鳍笛鲷初始投喂阶段使用10~20 个·mL–1的轮虫密度投喂仔鱼,红鳍笛鲷13 dph即可驯料,而最佳驯料期为16~22 dph。

     

    Abstract: To determine the optimal feeding density of rotifer and weaning time for Lutjanus erythopterus larvae and juveniles, we studied the impact of different rotifer feeding densities on the growth, survival and food selectivity for juvenile L. erythopterus. Then we investigated the effect of weaning time 13 dph (days post hatching, W13), 16 dph (W16), 19 dph (W19) and 22 dph (W22) on the rearing performance of larval and juvenile L. erythopterus by using the evaluation indicators of growth, survival, RNA/DNA ratio and epithelial cell height of the digestive tract. The results show that the feeding density of rotifer affected the ingestion, food selection, growth and survival rate of L. erythopterus juveniles significantly. When the feeding density of rotifer was 10–20 ind·mL–1, there was no significant difference in the growth and survival rate of the juveniles, but significantly higher than treatment groups of 1 ind·mL–1 and 30 ind·mL–1. In the weaning experiment, the growth and survival rates of W19 and W22 groups were significantly higher than those of the other two groups, and the W13 treatment group had the lowest RNA/DNA ratio. At 22 dph, the height of the epithelial cells of digestive tract was significantly lower in the W13 and W16 groups than in the other two groups. It is indicated that the rotifer density had significant impact on the food selectivity of L. erythopterus during mixed feeding period of rotifers and Artemia nauplii. The rotifer density of 10–20 ind·mL–1 is recommended for the initial feeding period of L. erythopterus, and the weaning of L. erythopterus can be started on 13 dph, but the best timing was 16–22 dph.

     

/

返回文章
返回