Optimization of high-pressure speece cone selection and accessories development of breeding vessels
-
摘要: 优质的海水是深远海集约化养殖成功的前提,提升养殖水体的溶解氧对于高密度养殖至关重要。增氧锥是养殖水体最高效的增氧设备之一。针对深远海养殖工船空间紧凑的现状,对增氧锥外形进行优选,并开发相关配件,以达到高效增氧和节约空间的目的。采用流体仿真技术,利用其文丘里结构产生的射流、偏流、回流现象获得增氧效果;通过设计开发微孔曝气射流装置,借助微气泡原理和二次射流效果,进一步提升了增氧锥中氧气溶于水的效率。流体仿真软件结果显示,在其他条件相同的情况下,增氧锥截面角度为28°时,液速峰值最高,产生的溶解氧效果最佳;有无曝气管射流的对比实验结果显示,加装曝气管的增氧锥增氧速度较快,该配件对于增氧锥的作业有良好的辅助功能,具有较好的应用价值。Abstract: High-quality seawater is the prerequisite for success of intensive marine aquaculture, and improving dissolved oxygen of aquaculture water is crucial for high-density aquaculture. Speece cone is one of the most efficient oxygenating equipments in aquaculture water. In view of the current situation of compact space of offshore breeding vessel, we optimized the selection of speece cone, and developed related accessories to achieve the purposes of efficient aeration and space saving. We applied fluid simulation technology to optimize the angle of speece cone, and reasonably used the jet and bias phenomenon caused by venturi structure to increase the dissolved oxygen effect. By the design and development of microporous aeration jet device with help of microbubble principle and secondary jet effect, we improved the efficiency of oxygen dissolved in water in the speece cone. According to the results of the fluid simulation software, under the same other conditions, the speece cone section had the highest peak liquid velocity and the best dissolved oxygen at the section angle of 28°. According to the comparative experimental results of whether there was an aeration jet device, the speece cone with aeration jet device was faster, and it is concluded that the accessory has good auxiliary function for the operation of speece cone and has a good value of application.
-
Key words:
- Breeding vessels /
- Speece cone /
- Fluid simulation /
- Preference appearance
-
表 1 管径、速度、流量对照表
Table 1. Check list of caliber, velocity and rate of flow
管径 (DN)
Caliber流量 Rate of flow/(m3·h−1) 1.2 m·s−1 1.4 m·s−1 1.6 m·s−1 1.8 m·s−1 2.0 m·s−1 2.2 m·s−1 2.4 m·s−1 2.6 m·s−1 2.8 m·s−1 3.0 m·s−1 40 5.4 6.3 7.2 8.1 9.0 10.0 10.9 11.8 12.7 13.6 50 8.5 9.9 11.3 12.7 12.7 15.6 17.0 18.4 19.8 21.2 65 14.3 16.7 19.1 21.5 21.5 26.3 28.7 31.1 33.4 35.8 80 21.7 25.3 29.0 32.6 32.6 39.8 43.4 47.0 50.7 54.3 100 33.9 39.6 45.2 50.9 56.5 62.2 67.9 73.5 79.2 84.8 125 53.0 61.9 70.7 79.5 88.4 97.2 106.0 114.9 123.7 132.5 150 76.3 89.1 101.8 114.5 127.2 140.0 152.7 165.1 178.1 190.9 -
[1] 张宝龙, 赵子续, 曲木, 等. 工厂化水产养殖现状分析[J]. 养殖与饲料, 2020(1): 31-34. [2] 周小燕, 倪琦, 徐皓, 等. 2021年中国水产养殖全程机械化发展报告[J]. 中国农机化学报, 2022, 43(12): 1-4. [3] 赵文涓. 水产生态养殖与新养殖模式发展战略探析[J]. 畜牧兽医科技信息, 2022(4): 203-205. [4] 王海姮, 侯昊晨, 刘鹰. 循环水养殖系统的研究进展及发展趋势[J]. 水产科学, 2023, 42(4): 735-741. [5] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: II-III. [6] 王祖峰, 刘晓军, 赵文武. 传统水产养殖场 (区) 生态化、景观化、休闲化改造的初步思考[J]. 淡水渔业, 2020, 50(4): 108-112. [7] 徐皓, 陈家勇, 方辉, 等. 中国海洋渔业转型与深蓝渔业战略性新兴产业[J]. 渔业现代化, 2020, 47(3): 1-9. [8] 何皛磊, 张海文. “深海渔场”的应用前景[J]. 船舶, 2018(2): 1-6. [9] 徐杰, 韩立民, 张莹. 我国深远海养殖的产业特征及其政策支持[J]. 中国渔业经济, 2021, 39(1): 98-107 [10] 徐琰斐, 徐皓, 刘晃. 中国深远海养殖发展方式研究[J]. 渔业现代化, 2021, 48(1): 9-15. [11] 闫国琦, 倪小辉, 莫嘉嗣. 深远海养殖装备技术研究现状与发展趋势[J]. 大连海洋大学学报, 2018, 33(1): 123-129. [12] 纪毓昭, 王志勇. 我国深远海养殖装备发展现状及趋势分析[J]. 船舶工程, 2020, 42(S2): 1-4, 82. [13] 胡方珍, 盛伟群, 王体涛. 深远海养殖装备技术现状及标准化工作建议[J]. 船舶标准化工程师, 2021, 54(5): 6-12. [14] 黄小华, 庞国良, 袁太平, 等. 我国深远海网箱养殖工程与装备技术研究综述[J]. 渔业科学进展, 2022, 43(6): 121-131. [15] 张琳桓, 张青亮, 孟广玮. 基于可移动式养殖工船的新型深远海养殖产业链分析[J]. 船舶工程, 2020(增2): 40-44. [16] 崔铭超, 金娇辉, 黄温赟. 养殖工船系统构建与总体技术探讨[J]. 渔业现代化, 2019, 46(2): 61-66. [17] ASHLEY K, MAVINIC D, HALL K. Oxygenation performance of a laboratory-scale speece cone hypolimnetic aerator: preliminary assessment[J]. Can J Civil Engin, 2008, 35(7): 663-675. doi: 10.1139/L08-011 [18] 庄礼贤. 流体力学[M]. 北京: 中国科学技术大学出版社, 1997: 105-175. [19] 房燕, 曹广斌, 韩世成, 等. 基于Fluent的工厂化水产养殖增氧锥的数值模拟及结构优化设计[J]. 江苏农业科学, 2013, 41(4): 355-358. [20] ASHLEY K, FATTAH K, MAVINIC D, et al. Analysis of design factors influencing the oxygen transfer of a pilot-scale speece cone hypolimnetic aerator[J]. J Environ Engin, 2014, 140(3): 04013011. doi: 10.1061/(ASCE)EE.1943-7870.0000789 [21] 陈有光, 段登选, 陈秀丽, 等. 工厂化养鱼中氧气锥的增氧规律[J]. 渔业现代化, 2009, 36(3): 26-30. [22] 农宏亮, 曾伯胜, 莫建霖, 等. 基于SolidWorks Flow Simulation的甘蔗收割机排杂装置内部流场模拟[J]. 农业工程, 2017, 7(4): 133-137, 177. [23] 阎昌琪. 气液两相流[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 2-5. [24] 颜攀. 固定床鼓泡反应器中微气泡的形成演化规律[D]杭州: 浙江大学, 2017: 51-52. [25] AGO K, NAGASAWA K, TAKITA J, et al. Development of an aerobic cultivation system by using a microbubble aeration technology[J]. J Chem Engin Jap, 2005, 38(9): 757-762. doi: 10.1252/jcej.38.757 [26] 王淼, 黄兴法, 李光永. 文丘里施肥器性能数值模拟研究[J]. 农业工程学报, 2006, 22(7): 27-31. [27] LI G, YANG X G, DAI G. CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column[J]. Chem Engin Sci, 2009, 64(24): 5104-5116. doi: 10.1016/j.ces.2009.08.016 [28] 蒋建明, 朱正伟, 李正明, 等. 水产养殖中复合精确自动增氧技术研究[J]. 农业机械学报, 2017, 48(12): 334-339. [29] 周红标. 基于自组织模糊神经网络的污水处理过程溶解氧控制[J]. 化工学报, 2017, 68(4): 1516-1524. [30] 史兵. 河蟹池塘养殖智能支持系统关键技术研究[D]. 镇江: 江苏大学, 2013: 40-47 [31] 马相鹏, 高海波, 李程, 等. 基于鲸鱼算法的养殖工船水泵模糊控制优化研究[J]. 渔业现代化, 2023, 50(3): 48-55. [32] 房燕. 工厂化水产养殖纯氧增氧锥优化设计与性能测试[D]. 上海: 上海海洋大学, 2013: 34-35. -
计量
- 文章访问数: 33
- 被引次数: 0