Landmark-based morphometric identification of two subpopulations of Larimichthys polyactis in Southern Yellow Sea and East China Sea
-
摘要: 为比较不同地理群体的小黄鱼 (Larimichthys polyactis) 矢耳石形态特征,进一步明晰其种群划分问题,首次应用长于提取形态特征的地标点法探究了南黄海和东海小黄鱼群体的耳石形态学差异。2022年3—12月,自海州湾、吕泗、长江口和舟山渔场各采集30尾1龄小黄鱼,统一摘取其左矢耳石样本,在耳石外轮廓和耳石内听沟上分别提取了7个和4个地标点,进行地标点法分析。结果显示:1) 耳石听沟上的地标点8—11相对扭曲贡献率总计为91.88%,耳石外轮廓上的地标点1—7的总贡献率仅有8.12%,表明4个地理群体小黄鱼的耳石形态差异主要来源于耳石听沟;2) 主成分分析散点图显示,部分海州湾群体被显著的划分为1个类群,剩余部分海州湾渔场群体和其他3个渔场所有群体高度重叠聚集为另一个类群,表明南黄海海域可能存在两个小黄鱼种群,即南黄海-东海群和北黄海-渤海群,同时也表明海州湾渔场存在着小黄鱼混栖群体。该现象可能是由于小黄鱼早期鱼卵、仔幼鱼阶段被动扩散和后期主动洄游造成的生境差异,从而诱导其耳石形态表型性状特化。研究结果证实了耳石地标点法在鱼类种间识别的可行性,从耳石形态学角度可为中国近海小黄鱼种群划分提供参考。Abstract: To compare the otolith morphology of different Larimichthys polyactis populations, and to further clarify their population division, we applied the landmark method better at extracting morphological features for the first time, to explore the morphological differences of otoliths from L. polyactis populations in the Southern Yellow Sea and East China Sea. From March to December 2022, 30 individuals of 1-year old fish had been collected from each from Haizhou Bay (HZB), Lyusi (LS), Yangtze Estuary (YTE) and Zhoushan (ZS) fishing grounds. After extracting the left sagittal otoliths, we seclected even landmarks in the otolith contour and four landmarks in the sulcus acusticus for the landmark analysis. Results show that: 1) Among the 11 landmarks, those in the sulcus acusticus (Landmark 8−11) had main contribution (91.88%) in explaining the main source of morphological variation, while those in the otolith contour (Landmark 1−7) just had 8.12%, which reveals that the differences in otolith morphology among the four geographical groups mainly came from the auditory sulcus of the otolith. 2) According to the scatter plot of principal component analysis, part of the Haizhou Bay population was significantly divided into one group, while the remaining Haizhou Bay fishing grounds and all other three fishing grounds had highly overlapped and clustered into another group, indicating that there might be two L. polyactis populations in the Southern Yellow Sea area, namely the Southern Yellow Sea-East China Sea group and the Northern Yellow Sea-Bohai Sea group. This also indicates that there were mixed populations of L. polyactis in the Haizhou Bay fishing grounds. This may be explained by the long-term egg and larval dispersal process controlled by the current and active migratory routes during feeding and overwintering period. The results verified the potential of otolith morphology in delineating the populations of L. polyactis, providing valuable references for their spatiotemporal distribution.
-
图 3 相对扭曲分数第1、第2主成分散点图 (主成分得分×102) 和网格变形图 (变异扩大10倍)
注:HZB. 海州湾渔场;LS. 吕泗渔场;YTE. 长江口渔场;ZS. 舟山渔场。图4同此。
Figure 3. Scatterplots of relative warp scores on 1st and 2nd (Principal component scores are enlarged 102 times) principal component and grid deformation of otolith (Variation are enlarged 10 times)
Note: HZB. Haizhou Bay fishing ground; LS. Lyusi fishing ground; YTE. Yangtze Estuary fishing ground; ZS. Zhoushan fishing ground. The same case in Fig. 4.
表 1 4个渔场小黄鱼样本详细信息
Table 1. Detailed information of L. polyactis sampled from four fishing grounds
采样海域
Sampling sea area样本数
Number of samples采样时间
Sampling time体长
Body length/mm体质量
Body mass/g年龄
Age海州湾渔场
Haizhou Bay Fishing Ground, HZB30 2022年6—7月 108.30±4.54a 19.35±3.70 a 1+ 吕泗渔场
Lyusi Fishing Ground, LS30 2022年3—5月 107.90±6.65 a 19.20±3.85 a 1+ 长江口渔场
Yangtze Estuary Fishing Ground, YTE30 2022年8月 106.13±5.47 a 18.50±3.24 a 1+ 舟山渔场
Zhoushan Fishing Ground, ZS30 2022年11月 105.50±5.10 a 18.15±3.15 a 1+ 注:同列相同上标字母表示数据间无显著性差异 (P>0.05)。 Note: The same superscript letters within the same column indicate no significant differences among the data (P>0.05). 表 2 不同地标点的相对扭曲贡献率与定义
Table 2. Relative contribution and definitions of different landmarks
地标点
Landmark贡献率
Contribution rate/%定义
Definition地标点
Landmark贡献率
Contribution rate/%定义
Definition1 0.54 耳石背面的最宽点 7 0.54 听沟背面和前端之间突出的点 2 2.20 耳石背面和后端之间凹陷的点 8 4.71 听沟口端部和颈状部的靠耳石背面的交点 3 0.52 耳石后端的最长点 9 4.91 听沟口端部和颈状部的靠耳石腹面的交点 4 3.22 耳石腹面和后端之间凹陷的点 10 36.86 听沟尾端部和颈状部的靠耳石背面的交点 5 0.64 耳石腹面的最宽点 11 45.40 听沟尾端部和颈状部的靠耳石腹面的交点 6 0.45 耳石前端的最长点 表 3 18个相对扭曲得分的特征值和贡献率
Table 3. Eigenvalues and contribution rates of 18 relative warps scores
主成分
Principal
component特征值
Eigenvalue贡献率
Contribution
rate/%累计贡献率
Cumulative contribution
rate/%1 2.49×10−2 89.93 89.93 2 7.23×10−4 2.21 92.13 3 6.43×10−4 1.96 94.10 4 4.04×10−4 1.23 95.33 5 3.38×10−4 1.03 96.36 6 2.08×10−4 0.64 97.00 7 1.93×10−4 0.59 97.59 8 1.83×10−4 0.56 98.15 9 1.33×10−4 0.41 98.55 10 1.16×10−4 0.35 98.91 11 8.70×10−5 0.26 99.17 12 5.30×10−5 0.16 99.33 13 5.00×10−5 0.15 99.49 14 4.80×10−5 0.15 99.64 15 4.00×10−5 0.12 99.76 16 3.30×10−5 0.10 99.86 17 2.80×10−5 0.09 99.95 18 1.80×10−5 0.05 100.00 总方差 Total variance 0.032 74 -
[1] 毛锡林, 俞积楚, 秦忆芹. 东海渔业资源调查与区划[M]. 上海: 华东师范大学出版社, 1987: 339-356. [2] FAO. Fishery and Aquaculture Statistics. Global capture production 1950–2022. Updated 2023[R/OL]. Rome: FAO Fisheries and Aquaculture Department, 2022. [3] CHOI M, KIM D. Assessment and management of small yellow croaker (Larimichthys polyactis) stocks in South Korea[J]. Sustainability, 2020, 12(19): 8257. doi: 10.3390/su12198257 [4] 农牧渔业部水产局. 东海区渔业资源调查和区划[M]. 上海: 华东师范大学出版社, 1987: 318-356. [5] SONG D D, XIONG Y, JIANG T, et al. Isotopic evidence of population connectivity at multiple life stages for Larimichthys polyactis in the Southern Yellow Sea and East China Sea[J]. Fishes, 2023, 8(3): 133. doi: 10.3390/fishes8030133 [6] SONG D D, XIONG Y, JIANG T, et al. Early life migration and population discrimination of the small yellow croaker (Larimichthys polyactis) from the Yellow Sea: inferences from otolith Sr/Ca ratios[J]. J Oceanol Limnol, 2022, 40: 818-829. doi: 10.1007/s00343-021-1041-x [7] LI G D, XIONG Y, ZHONG X M, et al. Changes in overwintering ground of small yellow croaker (Larimichthys polyactis) based on MaxEnt and GARP models: a case study of the Southern Yellow Sea stock[J]. J Fish Biol, 2023, 102(6): 1358-1372. doi: 10.1111/jfb.15383 [8] 刘勇, 程家骅. 东海区小黄鱼海底水温分布特征及分析方法比较[J]. 中国水产科学, 2018, 25(2): 423-435. [9] 徐兆礼, 陈佳杰. 再议中国近海小黄鱼种群的划分问题[J]. 应用生态学报, 2010, 21(11): 2856-2864. [10] JIANG Y Q, ZHANG C, YE Z J, et al. Analyses of egg size, otolith shape, and growth revealed two components of small yellow croaker in Haizhou Bay spawning stock[J]. J Oceanol Limnol, 2018, 37(4): 1423-1429. [11] 林新濯, 邓思明, 黄正一. 小黄鱼种族生物学测定的研究[C]//海洋渔业资源论文选集. 北京: 农业出版社, 1965: 84-108. [12] 林龙山, 姜亚洲, 刘尊雷, 等. 黄海南部和东海小黄鱼资源分布差异性研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(3): 1-6. doi: 10.16441/j.cnki.hdxb.2010.03.001 [13] HAN Z Q, LIN L S, SHUI B N, et al. Genetic diversity of small yellow croaker (Larimichthys polyactis) revealed by AFLP markers[J]. Afr J Agric Res, 2009, 4(7): 605-610. [14] LIU B J, ZHANG B D, XUE D X, et al. Population structure and adaptive divergence in a high gene flow marine fish: the small yellow croaker (Larimichthys polyactis)[J]. PLoS One, 2016, 11(4): e0154020. doi: 10.1371/journal.pone.0154020 [15] ZHANG B D, LI Y L, XUE D X, et al. Population genomic evidence for high genetic connectivity among populations of small yellow croaker (Larimichthys polyactis) in inshore waters of China[J]. Fish Res, 2020, 225: 105505. doi: 10.1016/j.fishres.2020.105505 [16] XIAO Y S, ZHANG Y, GAO T X, et al. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker (Larimichthys polyactis)[J]. Environ Biol Fishes, 2009, 85(4): 303-314. doi: 10.1007/s10641-009-9497-0 [17] ZHENG J, ZHAO L, ZHAO X, et al. High genetic connectivity Inferred from Whole-Genome resequencing provides insight into the Phylogeographic pattern of Larimichthys polyactis[J]. Mar Biotechnol, 2022, 24: 671-680. doi: 10.1007/s10126-022-10134-y [18] PANNELLA G. Fish Otoliths: daily growth layers and periodical patterns[J]. Science, 1971, 173(4002): 1124-1127. doi: 10.1126/science.173.4002.1124 [19] SCHULZ-MIRBACH T, LADICH F, PLATH M, et al. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths[J]. Biol Rev, 2019, 94: 457-482. doi: 10.1111/brv.12463 [20] DUNCAN R, BROPHY D, ARRIZABALAGA H. Otolith shape analysis as a tool for stock separation of albacore tuna feeding in the Northeast Atlantic[J]. Fish Res, 2018, 200: 68-74. doi: 10.1016/j.fishres.2017.12.011 [21] 欧利国, 刘必林. 基于地标点法的4种鲹科鱼类矢耳石形态分类[J]. 大连海洋大学学报, 2020, 35(1): 114-120. [22] SADEGHI R, ESMARILI R, ZAREI F, et al. Population structure of the ornate goby, Istigobius ornatus (Teleostei: Gobiidae), in the Persian Gulf and Oman Sea as determined by otolith shape variation using ShapeR[J]. Environ Biol Fish, 2020, 103: 1217-1230. doi: 10.1007/s10641-020-01015-1 [23] IBÁÑEZ L, HERNÁNDEZ-FRAGA K, ALVAREZ-HERNÁNDEZ S. Discrimination analysis of phenotypic stocks comparing fish otolith and scale shapes[J]. Fish Res, 2017, 185: 6-13. doi: 10.1016/j.fishres.2016.09.025 [24] 叶振江, 孟晓梦, 高天翔, 等. 两种花鲈 (Lateolabrax sp. ) 耳石形态的地理变异[J]. 海洋与湖沼, 2007, 38(4): 356-360. doi: 10.3321/j.issn:0029-814X.2007.04.010 [25] REIG-BOLAÑO R, MARTI-PUIG P, RODRIGUEZ S, et al. Otoliths identifiers using image contours EFD[M]//de LEON F. de CARVALHO A P, RODRÍGUEZ-GONZÁLEZ S, de PAZ SANTANA J F, et al. Distributed computing and artificial intelligence. Advances in intelligent and soft computing, vol 79. Berlin, Heidelberg: Springer, 2010: 9-16. [26] 潘晓哲, 高天翔. 基于耳石形态的鱚属鱼类鉴别[J]. 动物分类学报, 2010, 35(4): 799-805. [27] CAMPANA E, CASSELMAN M. Stock discrimination using otolith shape analysis[J]. Can J Fish Aquat Sci, 1993, 50(5): 1062-1083. doi: 10.1139/f93-123 [28] 王旭, 韩志强, 朱柏军, 等. 东海小黄鱼耳石形态特征研究[J]. 浙江海洋学院学报(自然科学版), 2012, 31(6): 492-496. [29] 方聪, 郭治明, 线薇微, 等. 耳石形态在长江口小黄鱼生活史研究及群体识别中的应用[J]. 中国海洋大学学报(自然科学版), 2018, 48(08): 57-67. doi: 10.16441/j.cnki.hdxb.20170006 [30] 康中杰, 宋大德, 李纲, 等. 基于耳石不同切面的小黄鱼年龄鉴定及其生长方程年龄反演比较[J]. 海洋渔业, 2022, 44(5): 543-554. [31] 水柏年. 黄海南部、东海北部小黄鱼的年龄与生长研究[J]. 浙江海洋学院学报, 2003, 22(1): 16-20. [32] 徐兆礼, 陈佳杰. 小黄鱼洄游路线分析[J]. 中国水产科学, 2009, 16(6): 931-940. [33] 姜涛, 郑朝臣, 黄洪辉, 等. 基于地标点法的九龙江口和珠江口凤鲚和七丝鲚耳石形态学特征比较[J]. 南方水产科学, 2018, 14(6): 10-16. [34] XIONG Y, YANG J, ZHANG Z H, et al. Factors affecting morphological development of the sagittal otolith in juvenile and adult small yellow croaker (Larimichthys polyactis Bleeker, 1877)[J]. J Appl Ichthyol, 2015, 31: 1023-1028. doi: 10.1111/jai.12914 [35] JIANG Y Z, CHENG J H, LI S F. Temporal changes in the fish community resulting from a summer fishing moratorium in the northern East China Sea[J]. Mar Ecol Prog Ser, 2009, 387: 265-273. doi: 10.3354/meps08078 [36] 张申增, 麦广铭, 陈志劼, 等. 红鳍笛鲷和紫红笛鲷种类和群体的矢耳石地标点法识别[J]. 广东海洋大学学报, 2020, 40(2): 35-43. [37] 侯刚, 刘丹丹, 冯波, 等. 基于地标点几何形态测量法识别北部湾4种白姑鱼矢耳石形态[J]. 中国水产科学, 2013, 20(6): 1293-1302. [38] VIGNON M. Ontogenetic trajectories of otolith shape during shift in habitat use: Interaction between otolith growth and environment[J]. J Exp Mar Biol Ecol, 2012, 420/421: 26-32. doi: 10.1016/j.jembe.2012.03.021 [39] WANG L, LIU S F, ZHUANG Z M, et al. Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis)[J]. PLoS One, 2013, 8(12): e83493. doi: 10.1371/journal.pone.0083493 [40] GU Y G, HUANG H H, LIANG Y, et al. Micro-CT and SEM investigation of sound absorption structure and chambers in the otoliths of Giant Panda fish species-Chinese Bahaba (Bahaba taipingensis)[J]. Micron, 2022: 103342. [41] MARTÍ-PUIG P, DANÉS J, MANJABACAS A, et al. New parameterisation method for three-dimensional otolith surface images[J]. Mar Freshw Res, 2016, 67(7): 1059. doi: 10.1071/MF15069 [42] REN S, JIN X S, YANG T, et al. A dynamic energy budget model for small yellow croaker (Larimichthys polyactis): parameterisation and application in its main geographic distribution waters[J]. Ecol Model, 2020, 427: 109051. doi: 10.1016/j.ecolmodel.2020.109051 [43] XIONG Y, ZHONG X M, TANG J H, et al. Migration and population structure characteristics of the small yellow croaker (Larimichthys polyactis) in the Southern Yellow Sea[J]. Acta Oceanologica Sinica, 2016, 35(6): 34-41. doi: 10.1007/s13131-016-0844-7 [44] XIONG Y, YANG J, JIANG T, et al. Early life history of the small yellow croaker (Larimichthys polyactis) in sandy ridges of the South Yellow Sea[J]. Mar Biol Res, 2017, 13(9): 993-1002. doi: 10.1080/17451000.2017.1319067 [45] XU M, WANG Y H, LIU Z L, et al. Seasonal distribution of the early life stages of the small yellow croaker (Larimichthys polyactis) and its dynamic controls adjacent to the Changjiang River Estuary[J]. Fish Oceanogr, 2023, 32(4): 390-404. doi: 10.1111/fog.12635 [46] LIN N, CHEN Y G, JIN Y, et al. Distribution of the early life stages of small yellow croaker in the Yangtze River estuary and adjacent waters[J]. Fish Sci, 2018, 84(2): 357-363. doi: 10.1007/s12562-018-1177-6 [47] LIAN E, WANG S, ARTIGUE L, et al. Unraveling the synoptic-scale penetration of the Yellow Sea coastal water into the Changjiang River Estuary[J]. J Geophys Res-Oceans, 2022, 127: e2022JC018773. doi: 10.1029/2022JC018773 [48] 韦钦胜, 于志刚, 冉祥滨, 等. 黄海西部沿岸流系特征分析及其对物质输运的影响[J]. 地球科学进展, 2011, 26(2): 145-156. [49] 黄康康, 叶振江, 于海庆, 等. 基于拉格朗日粒子追踪的黄海中南部小黄鱼幼体早期输运初步研究[J]. 浙江海洋大学学报(自然科学版), 2020, 39(6): 538-543. [50] ZHANG C, YE Z J, PANHWAR S K, et al. Stock discrimination of the Japanese Spanish mackerel (Scomberomorus niphonius) based on the otolith shape analysis in the Yellow Sea and Bohai Sea[J]. J Appl Ichthyol, 2013, 29: 368-373. doi: 10.1111/jai.12084 [51] 严利平, 李建生, 沈德刚, 等. 黄海南部、东海北部小黄鱼饵料组成和摄食强度的变化[J]. 海洋渔业, 2006, 28(2): 117-123. doi: 10.3969/j.issn.1004-2490.2006.02.006 -
计量
- 文章访问数: 35
- 被引次数: 0