Multi-group convolutional neural network for gender recognition of Portunus tritubereulatus
-
摘要: 为了实现梭子蟹的智能化分拣,高精度的智能识别分类成为亟待解决的关键技术。首先对采集到的梭子蟹图像进行预处理和数据增强,构建出梭子蟹性别分类数据集 (Portunus gender classification dataset, PGCD);提出一种基于多组卷积神经网络的梭子蟹性别识别方法,该方法主要使用ResNet50从图像块中提取特征,降低特征提取过程的信息损失。为了更专注地找出输入数据的有用信息,开发出一种注意力机制来强调全局特征图中的细节重要性;最后进行了一系列的参数调整,提高了网络的训练效率和分类精度。实验结果显示,该方法在PGCD上的分类准确率、召回率和查准率分别达到95.59%、94.41%和96.68%,识别错误率仅为4.41%。表明该方法具有优越的分类性能,可用于梭子蟹性别的自动分类及识别系统。Abstract: High-precision intelligent recognition and classification has become a key technology for intelligent sorting of Portunus trituberculatus. We first preprocessed and enhanced the collected images of P. tritubereulatus so as to build a Portunus gender classification dataset (PGCD). Besides, we proposed a multi-group convolutional neural network for gender classification of the P. tritubereulatus, mainly using ResNet50 to extract features from image patches, thereby reducing information loss during the feature extraction process. In order to focus more on finding useful information of input data, we also constructed an attention mechanism before gender classification to emphasize the importance of details in the global feature map. The results show that the classification accuracy, recall and accuracy of this method on PGCD were 95.59%, 94.41% and 96.68%, respectively, with a recognition error rate of only 4.41%. It is concluded that the method has superior classification performance and can be used in automatic classification and recognition systems for Portunus gender.
-
表 1 不同骨干模型对MGCNN性能的影响
Table 1. Effects of different backbone models on MGCNN performance
骨干模型
Backbone model准确率
Accuracy/%VGG VGG11 76.88 VGG13 82.59 VGG16 89.76 VGG19 86.09 ResNet ResNet18 90.44 ResNet34 91.15 ResNet50 92.79 ResNet101 92.21 ResNet152 88.24 表 2 不同优化器对MGCNN性能的影响
Table 2. Effects of different optimizers on MGCNN performance
骨干模型
Backbone model优化器
Optimizer准确率
Accuracy/%ResNet50 SGD 92.79 AdaGrad 89.56 RMSprop 95.15 Adam 95.29 Adamax 93.82 ASGD 92.65 表 3 不同参数对MGCNN性能的影响
Table 3. Effects of different parameters on MGCNN performance
学习率
Learning Rate批大小
Batch Size准确率
Accuracy/%0.000 1 32 92.94 0.000 5 95.00 0.001 0 95.29 0.001 5 95.59 0.002 0 92.65 0.001 5 64 94.56 32 95.59 16 95.15 表 4 MGCNN与先进方法的比较
Table 4. Comparison between MGCNN and state-of-the-art methods
方法
Method准确率
Accuracy/%召回率
Recall/%查准率
Precision/%错误率
Error/%AlexNet 54.71 59.36 67.93 45.29 VGG16 89.85 88.24 91.19 10.15 ResNet152 94.56 94.71 94.43 5.44 DenseNet121 94.41 94.41 94.41 5.59 InceptionV3 95.00 92.65 97.22 5.00 MGCNN
(本研究方法 Our method)95.59 94.41 96.68 4.41 -
[1] 王陈星, 倪震宇, 刘必林, 等. 利用胃磨鉴定三疣梭子蟹年龄初探[J]. 南方水产科学, 2020, 16(3): 94-102. [2] DIXIT M, RASIWASIA N, VASCONCELOS N. Adapted gaussian models for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA. IEEE, 2011: 937-943. [3] GAO Z H, LIU X W. Support vector machine and object-oriented classification for urban impervious surface extraction from satellite imagery[C]//The Third International Conference on Agro-Geoinformatics (ICAG), Beijing, China. IEEE, 2014: 1-5. [4] GAN Z, ZHONG L, LI Y F, et al. A random forest based method for urban object classification using lidar data and aerial imagery[C]//The 23rd International Conference on Geoinformatics. Wuhan, China. IEEE, 2015: 1-4. [5] MUNOZ D, BAGNELL J A, VANDAPEL N, et al. Contextual classification with functional max-margin markov networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA. IEEE, 2009: 975-982. [6] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Contextual classification of lidar data and building object detection in urban areas[J]. Isprs J Photogramm, 2014, 87: 152-165. doi: 10.1016/j.isprsjprs.2013.11.001 [7] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. P IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791 [8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539 [9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Commun Acm, 2017, 60(6): 84-90. doi: 10.1145/3065386 [10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2022-02-26].https://arxiv.org/abs/1409.1556.pdf. [11] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA. IEEE, 2015: 1-9. [12] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. IEEE, 2016: 770-778. [13] HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA. IEEE, 2017: 4700-4708. [14] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Tech Report, 2009(4): 1-80. [15] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. Int J Comput Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y [16] 杜丽君, 唐玺璐, 周娇, 等. 基于注意力机制和多任务学习的阿尔茨海默症分类[J]. 计算机科学, 2022, 49 (S1) : 60-65. [17] 王宁, 程家骅, 张寒野, 等. 水产养殖水体遥感动态监测及其应用[J]. 中国水产科学, 2019, 26 (5) : 893-903. [18] 朱明, 张镇府, 黄凰, 等. 基于轻量级神经网络MobileNetV3-Small的鲈鱼摄食状态分类[J]. 农业工程学报, 2021, 37 (19) : 165-172. [19] CAI J Y, LI C L, TAO X, et al. Image multi-inpainting via progressive generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA. IEEE, 2022: 978-987. [20] LIU F B, TIAN Y, CHEN Y H, et al. ACPL: anti-curriculum pseudo-labelling for semi-supervised medical image Classification[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA. IEEE, 2022: 20697-20706. [21] MAITY A, ROY S G, BHATTACHARJEE S, et al. Prediction of indian currency for visually impaired people using machine learning[M]. Singapore: Springer Nature Singapore, 2022: 263-275. [22] YU H L, CHENG X H, CHEN C C, et al. Apple leaf disease recognition method with improved residual network[J]. Multimed Tools Appl, 2022, 81(6): 7759-7782. doi: 10.1007/s11042-022-11915-2 [23] WEI K M, LI T Q, HUANG F R, et al. Cancer classification with data augmentation based on generative adversarial networks[J]. Front Comput Sci, 2022, 16(2): 1-11. [24] ZHAO Y, SHI Y B, WANG Z L. The improved YOLOV5 algorithm and its application in small target detection[C]//International Conference on Intelligent Robotics and Applications. Springer, Cham, 2022: 679-688. [25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Adva Info Proces Sys, 2017, 30: 1-11. [26] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale [EB/OL]. (2015-06-03)[2022-02-26].https://arxiv.org/pdf/2010.11929.pdf. [27] HU Y Y, SUN S L, XU X, et al. Multi-view deep attention network for reinforcement learning (student abstract)[C]//Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New York, NY, USA. 2020, 34 (10): 13811-13812. [28] WANG W J, WANG T, CAI Y. Multi-view attention-convolution pooling network for 3D point cloud classification[J]. Appl Intell, 2021: 1-12. [29] WANG W J, CAI Y, WANG T. Multi-view dual attention network for 3D object recognition[J]. Neural Comput Appl, 2022, 34(4): 3201-3212. doi: 10.1007/s00521-021-06588-1 [30] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[J]. Adva Informa Process, 2019, 32: 1-12. [31] ZHANG Z J. Improved adam optimizer for deep neural networks[C]//IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada. IEEE, 2018: 1-2. [32] CEN F, ZHAO X Y, LI W Z, et al. Deep feature augmentation for occluded image classification[J]. Pattern Recogn, 2021, 10: 1-13. [33] BIRD J J, BARNES C M, MANSO L J, et al. Fruit quality and defect image classification with conditional GAN data augmentation[J]. Sci Hortic, 2022, 10: 1-11. [34] LANG H T, WU S W. Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning[J]. IEEE Geosci Remote S, 2017, 14(10): 1765-1769. doi: 10.1109/LGRS.2017.2734889 [35] ZHANG T W, ZHANG X L, KE X, et al. HOG-ShipCLSNet: a novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE T Geosci Remote, 2021, 60: 1-22. [36] YU Q, YANG C Z, FAN H H, et al. Latent-MVCNN: 3D shape recognition using multiple views from pre-defined or random viewpoints[J]. Neural Process Lett, 2020, 52(1): 581-602. doi: 10.1007/s11063-020-10268-x [37] ALAM M T, KUMAR V, KUMAR A. A multi-view convolutional neural network approach for image data classification[C]//International Conference on Communication information and Computing Technology (ICCICT), Online, IEEE, 2021: 1-6. [38] YANG J, YANG G C. Modified convolutional neural network based on dropout and the stochastic gradient descent optimizer[J]. Algor, 2018, 11 (3) : 1-15. [39] POOJARY R, PAI A. Comparative study of model optimization techniques in fine-tuned CNN models[C]//International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates. IEEE, 2019: 1-4. [40] LYDIA A, FRANCIS S. AdaGrad: an optimizer for stochastic gradient descent[J]. Int J Inf Comput Sci, 2019, 6(5): 566-568. [41] EOM S H. Developing sentimental analysis system based on various optimizer[J]. Internat J Intt, Broa Commun, 2021, 13(1): 100-106. [42] RABBY S F, HASAN A, SOEB M J A, et al. Performance analysis of different convolutional neural network (CNN) models with optimizers in detecting tuberculosis (TB) from various chest X-ray images[J]. Euro J Enginee Tec Res, 2022, 7(4): 21-30. doi: 10.24018/ejeng.2022.7.4.2861 [43] SHI H Z, YANG N S, TANG H, et al. ASGD: sochastic gradient descent with adaptive batch size for every parameter[J]. Math, 2022, 10(6): 1-15. [44] PAYMODE A S, MALODE V B. Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG[J]. Art Intell Agric, 2022, 6: 23-33. [45] KHAN S, RAHMANI H, SHAH S A, et al. A guide to convolutional neural networks for computer vision[J]. Synth Lect Comput Vis, 2018, 8(1): 1-207. [46] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. IEEE, 2016: 2818-2826. -
计量
- 文章访问数: 22
- 被引次数: 0