留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多组卷积神经网络的梭子蟹性别识别研究

魏天琪 郑雄胜 李天兵 王日成

魏天琪, 郑雄胜, 李天兵, 王日成. 基于多组卷积神经网络的梭子蟹性别识别研究[J]. 南方水产科学. doi: 10.12131/20230107
引用本文: 魏天琪, 郑雄胜, 李天兵, 王日成. 基于多组卷积神经网络的梭子蟹性别识别研究[J]. 南方水产科学. doi: 10.12131/20230107
WEI Tianqi, ZHENG Xiongsheng, LI Tianbing, WANG Richeng. Multi-group convolutional neural network for gender recognition of Portunus tritubereulatus[J]. South China Fisheries Science. doi: 10.12131/20230107
Citation: WEI Tianqi, ZHENG Xiongsheng, LI Tianbing, WANG Richeng. Multi-group convolutional neural network for gender recognition of Portunus tritubereulatus[J]. South China Fisheries Science. doi: 10.12131/20230107

基于多组卷积神经网络的梭子蟹性别识别研究

doi: 10.12131/20230107
基金项目: 浙江省科技厅尖兵领雁计划项目 (2022C02001) ;舟山市科技计划项目 (2021C21005)
详细信息
    作者简介:

    魏天琪 (1994—),女,硕士研究生,研究方向为梭子蟹性别识别、分类等。E-mail: 18895685076@163.com

    通讯作者:

    郑雄胜  (1972—),男,副教授,硕士,研究方向为涉海机械装备设计与仿真分析等。E-mail: zxs668998@163.com

  • 中图分类号: TP 391.4

Multi-group convolutional neural network for gender recognition of Portunus tritubereulatus

  • 摘要: 为了实现梭子蟹的智能化分拣,高精度的智能识别分类成为亟待解决的关键技术。首先对采集到的梭子蟹图像进行预处理和数据增强,构建出梭子蟹性别分类数据集 (Portunus gender classification dataset, PGCD);提出一种基于多组卷积神经网络的梭子蟹性别识别方法,该方法主要使用ResNet50从图像块中提取特征,降低特征提取过程的信息损失。为了更专注地找出输入数据的有用信息,开发出一种注意力机制来强调全局特征图中的细节重要性;最后进行了一系列的参数调整,提高了网络的训练效率和分类精度。实验结果显示,该方法在PGCD上的分类准确率、召回率和查准率分别达到95.59%、94.41%和96.68%,识别错误率仅为4.41%。表明该方法具有优越的分类性能,可用于梭子蟹性别的自动分类及识别系统。
  • 图  1  所提方法的总体架构

    Figure  1.  Overall architecture of our approach

    图  2  部分梭子蟹样本 (左:雌性;右:雄性) 

    Figure  2.  Samples of Portunid (Left: female; Right: male) 

    图  3  两种降低像素的效果对比

    Figure  3.  Comparison of two pixel reduction effects

    图  4  5种不同类型的数据增强技术的示例

    Figure  4.  Examples of five different types of data enhancement technologies

    图  5  深度提取特征模块

    Figure  5.  Depth extraction feature module

    图  6  ResNet50[12]残差模块示意图

    Figure  6.  Residuals block diagram of ResNet50[12]

    图  7  融合特征分类模块

    Figure  7.  Fusion feature classification module

    图  8  混淆矩阵

    注:TP. 真阳性;FN. 假阴性;FP. 假阳性;TN. 真阴性。

    Figure  8.  Confusion matrix

    Note: TP.True positive; FN. False negative; FP. False positive; TN.True negative.

    图  9  梭子蟹性别分类的混淆矩阵

    Figure  9.  Confusion matrix of gender classification of P. tritubereulatus

    图  10  比较不同网络性能的ROC曲线和AUC

    Figure  10.  ROC curve and AUC to compare performance of different networks

    图  11  单幅图像预测概率

    Figure  11.  Prediction probability of single image

    表  1  不同骨干模型对MGCNN性能的影响

    Table  1.   Effects of different backbone models on MGCNN performance

    骨干模型
    Backbone model
    准确率 
    Accuracy/% 
    VGG VGG11 76.88
    VGG13 82.59
    VGG16 89.76
    VGG19 86.09
    ResNet ResNet18 90.44
    ResNet34 91.15
    ResNet50 92.79
    ResNet101 92.21
    ResNet152 88.24
    下载: 导出CSV

    表  2  不同优化器对MGCNN性能的影响

    Table  2.   Effects of different optimizers on MGCNN performance

    骨干模型
    Backbone model
    优化器
    Optimizer
    准确率 
    Accuracy/% 
    ResNet50 SGD 92.79
    AdaGrad 89.56
    RMSprop 95.15
    Adam 95.29
    Adamax 93.82
    ASGD 92.65
    下载: 导出CSV

    表  3  不同参数对MGCNN性能的影响

    Table  3.   Effects of different parameters on MGCNN performance

    学习率
    Learning Rate
    批大小
    Batch Size
    准确率
    Accuracy/% 
    0.000 1 32 92.94
    0.000 5 95.00
    0.001 0 95.29
    0.001 5 95.59
    0.002 0 92.65
    0.001 5 64 94.56
    32 95.59
    16 95.15
    下载: 导出CSV

    表  4  MGCNN与先进方法的比较

    Table  4.   Comparison between MGCNN and state-of-the-art methods

    方法
    Method
    准确率
    Accuracy/% 
    召回率
    Recall/% 
    查准率
    Precision/% 
    错误率
    Error/% 
    AlexNet54.7159.3667.9345.29
    VGG1689.8588.2491.1910.15
    ResNet15294.5694.7194.435.44
    DenseNet12194.4194.4194.415.59
    InceptionV395.0092.6597.225.00
    MGCNN
     (本研究方法 Our method) 
    95.5994.4196.684.41
    下载: 导出CSV
  • [1] 王陈星, 倪震宇, 刘必林, 等. 利用胃磨鉴定三疣梭子蟹年龄初探[J]. 南方水产科学, 2020, 16(3): 94-102.
    [2] DIXIT M, RASIWASIA N, VASCONCELOS N. Adapted gaussian models for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA. IEEE, 2011: 937-943.
    [3] GAO Z H, LIU X W. Support vector machine and object-oriented classification for urban impervious surface extraction from satellite imagery[C]//The Third International Conference on Agro-Geoinformatics (ICAG), Beijing, China. IEEE, 2014: 1-5.
    [4] GAN Z, ZHONG L, LI Y F, et al. A random forest based method for urban object classification using lidar data and aerial imagery[C]//The 23rd International Conference on Geoinformatics. Wuhan, China. IEEE, 2015: 1-4.
    [5] MUNOZ D, BAGNELL J A, VANDAPEL N, et al. Contextual classification with functional max-margin markov networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA. IEEE, 2009: 975-982.
    [6] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Contextual classification of lidar data and building object detection in urban areas[J]. Isprs J Photogramm, 2014, 87: 152-165. doi: 10.1016/j.isprsjprs.2013.11.001
    [7] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. P IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Commun Acm, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2022-02-26].https://arxiv.org/abs/1409.1556.pdf.
    [11] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA. IEEE, 2015: 1-9.
    [12] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. IEEE, 2016: 770-778.
    [13] HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA. IEEE, 2017: 4700-4708.
    [14] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Tech Report, 2009(4): 1-80.
    [15] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. Int J Comput Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    [16]       杜丽君, 唐玺璐, 周娇, 等. 基于注意力机制和多任务学习的阿尔茨海默症分类[J]. 计算机科学, 2022, 49 (S1) : 60-65.
    [17]       王宁, 程家骅, 张寒野, 等. 水产养殖水体遥感动态监测及其应用[J]. 中国水产科学, 2019, 26 (5) : 893-903.
    [18]       朱明, 张镇府, 黄凰, 等. 基于轻量级神经网络MobileNetV3-Small的鲈鱼摄食状态分类[J]. 农业工程学报, 2021, 37 (19) : 165-172.
    [19] CAI J Y, LI C L, TAO X, et al. Image multi-inpainting via progressive generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA. IEEE, 2022: 978-987.
    [20] LIU F B, TIAN Y, CHEN Y H, et al. ACPL: anti-curriculum pseudo-labelling for semi-supervised medical image Classification[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA. IEEE, 2022: 20697-20706.
    [21] MAITY A, ROY S G, BHATTACHARJEE S, et al. Prediction of indian currency for visually impaired people using machine learning[M]. Singapore: Springer Nature Singapore, 2022: 263-275.
    [22] YU H L, CHENG X H, CHEN C C, et al. Apple leaf disease recognition method with improved residual network[J]. Multimed Tools Appl, 2022, 81(6): 7759-7782. doi: 10.1007/s11042-022-11915-2
    [23] WEI K M, LI T Q, HUANG F R, et al. Cancer classification with data augmentation based on generative adversarial networks[J]. Front Comput Sci, 2022, 16(2): 1-11.
    [24] ZHAO Y, SHI Y B, WANG Z L. The improved YOLOV5 algorithm and its application in small target detection[C]//International Conference on Intelligent Robotics and Applications. Springer, Cham, 2022: 679-688.
    [25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Adva Info Proces Sys, 2017, 30: 1-11.
    [26] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale [EB/OL]. (2015-06-03)[2022-02-26].https://arxiv.org/pdf/2010.11929.pdf.
    [27] HU Y Y, SUN S L, XU X, et al. Multi-view deep attention network for reinforcement learning  (student abstract)[C]//Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New York, NY, USA. 2020, 34 (10): 13811-13812.
    [28] WANG W J, WANG T, CAI Y. Multi-view attention-convolution pooling network for 3D point cloud classification[J]. Appl Intell, 2021: 1-12.
    [29] WANG W J, CAI Y, WANG T. Multi-view dual attention network for 3D object recognition[J]. Neural Comput Appl, 2022, 34(4): 3201-3212. doi: 10.1007/s00521-021-06588-1
    [30] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[J]. Adva Informa Process, 2019, 32: 1-12.
    [31] ZHANG Z J. Improved adam optimizer for deep neural networks[C]//IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada. IEEE, 2018: 1-2.
    [32] CEN F, ZHAO X Y, LI W Z, et al. Deep feature augmentation for occluded image classification[J]. Pattern Recogn, 2021, 10: 1-13.
    [33] BIRD J J, BARNES C M, MANSO L J, et al. Fruit quality and defect image classification with conditional GAN data augmentation[J]. Sci Hortic, 2022, 10: 1-11.
    [34] LANG H T, WU S W. Ship classification in moderate-resolution SAR image by naive geometric features-combined multiple kernel learning[J]. IEEE Geosci Remote S, 2017, 14(10): 1765-1769. doi: 10.1109/LGRS.2017.2734889
    [35] ZHANG T W, ZHANG X L, KE X, et al. HOG-ShipCLSNet: a novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE T Geosci Remote, 2021, 60: 1-22.
    [36] YU Q, YANG C Z, FAN H H, et al. Latent-MVCNN: 3D shape recognition using multiple views from pre-defined or random viewpoints[J]. Neural Process Lett, 2020, 52(1): 581-602. doi: 10.1007/s11063-020-10268-x
    [37] ALAM M T, KUMAR V, KUMAR A. A multi-view convolutional neural network approach for image data classification[C]//International Conference on Communication information and Computing Technology (ICCICT), Online, IEEE, 2021: 1-6.
    [38] YANG J, YANG G C. Modified convolutional neural network based on dropout and the stochastic gradient descent optimizer[J]. Algor, 2018, 11 (3) : 1-15.
    [39] POOJARY R, PAI A. Comparative study of model optimization techniques in fine-tuned CNN models[C]//International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates. IEEE, 2019: 1-4.
    [40] LYDIA A, FRANCIS S. AdaGrad: an optimizer for stochastic gradient descent[J]. Int J Inf Comput Sci, 2019, 6(5): 566-568.
    [41] EOM S H. Developing sentimental analysis system based on various optimizer[J]. Internat J Intt, Broa Commun, 2021, 13(1): 100-106.
    [42] RABBY S F, HASAN A, SOEB M J A, et al. Performance analysis of different convolutional neural network (CNN) models with optimizers in detecting tuberculosis (TB) from various chest X-ray images[J]. Euro J Enginee Tec Res, 2022, 7(4): 21-30. doi: 10.24018/ejeng.2022.7.4.2861
    [43] SHI H Z, YANG N S, TANG H, et al. ASGD: sochastic gradient descent with adaptive batch size for every parameter[J]. Math, 2022, 10(6): 1-15.
    [44] PAYMODE A S, MALODE V B. Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG[J]. Art Intell Agric, 2022, 6: 23-33.
    [45] KHAN S, RAHMANI H, SHAH S A, et al. A guide to convolutional neural networks for computer vision[J]. Synth Lect Comput Vis, 2018, 8(1): 1-207.
    [46] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. IEEE, 2016: 2818-2826.
  • 加载中
计量
  • 文章访问数:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-20
  • 修回日期:  2023-07-31
  • 录用日期:  2023-09-09
  • 网络出版日期:  2023-09-13

目录

    /

    返回文章
    返回