Study on influence of environmental factors on CPUE of three different operation types in skipjack tuna fisheries
-
摘要: 鲣 (Katsuwonus pelamis) 广泛分布于各大洋热带和亚热带海域,在世界金枪鱼渔业中占有重要地位,其资源丰度受多种海洋环境因子的影响。研究利用2017—2019年毛里塔尼亚海域双拖渔业数据、2018—2020年中西太平洋围网渔业数据和2010—2020年美洲热带金枪鱼委员会网站记录的延绳钓渔业数据,结合降水、海表面盐度 (Sea surface salinity, SSS) 和海表面温度 (Sea surface temperature, SST) 等环境数据,利用广义加性模型 (Generalized additive model, GAM) 分析鲣的3种不同作业方式的单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 时空分布及其与降水等环境因子之间的关系。结果表明:月份对双拖和延绳钓作业方式鲣CPUE影响显著 (P<0.05);纬度对3种鲣作业方式的CPUE均存在显著影响 (P<0.05);降水对双拖和围网作业方式鲣CPUE分别存在极显著性 (P<0.001) 和显著性 (P<0.05) 影响,且影响趋势较为一致,即这2种作业方式中高CPUE出现在较为适宜的降水范围内,然而降水对鲣的延绳钓CPUE的影响并不显著;SSS和SST对鲣的3种作业方式CPUE影响显著 (P<0.05)。因此,在今后分析环境因子对渔业CPUE的影响效果时,建议将降水放入常规海洋环境因子中。Abstract: Skipjack tuna (Katsuwonus pelamis) is widely distributed in tropical and subtropical waters around the world and is a key target species in global tuna fishery. The abundance of its resources is influenced by various marine environmental factors. Based on the data from the pair trawl fishery in Mauritanian waters from 2017 to 2019, those from the purse seine fishery in the Western and Central Pacific Ocean from 2018 to 2020, and data from the longline fishery recorded on the IATTC website from 2010 to 2020, combining with environmental data such as precipitation, sea surface salinity (SSS) and sea surface temperature (SST), we analyzed the spatiotemporal distribution of catch per unit effort (CPUE) for three different fishing methods of skipjack tuna and its relationship with environmental factors such as precipitation by Generalized Additive Model (GAM). The findings indicate that month significantly influenced the CPUE of skipjack tuna in pair trawl and longline fishing methods (P<0.05). Latitude also had a significant effect in all three operating modes (P<0.05). Precipitation exhibited an extremely significant impact (P<0.001) on the CPUE of skipjack tuna in pair trawl fishing method and a significant impact (P<0.05) in purse seine fishing method. The trend of this effect was relatively consistent, with higher CPUE occurring within a more suitable range of precipitation. However, the effect of precipitation on the CPUE of skipjack tuna in longline fishing method was not significant. Sea surface salinity and sea surface temperature also had significant effects on the CPUE of skipjack tuna in all three operating modes (P<0.05). Hence, when analyzing the impact of environmental factors on fishery CPUE in the future, it is recommended to include precipitation in conventional marine environmental factors.
-
Key words:
- Katsuwonus pelamis /
- Pair trawl /
- Purse seine /
- Longline /
- Precipitation /
- Environmental factors
-
表 1 影响因子之间的共线性分析
Table 1. Collinearity analysis among influencing factors
作业方式
Fishing method年份
y月份
m经度
Llon纬度
Llat降水
Pprec海表面盐度
SSS海表面温度
TSS双拖 Pair trawler 1.38 1.93 2.20 3.96 1.59 2.89 2.60 围网 Purse-seine 1.06 1.52 1.09 1.51 1.79 1.41 2.10 延绳钓 Longline 1.03 1.20 4.15 2.96 1.26 1.619 3.08 表 2 GAM模型拟合及最优模型筛选
Table 2. GAM model fitting and optimal model screening
作业方式
Fishing method公式
Formula赤池信息准则 AIC 双拖
Pair trawlerln(YCPUE+1)=NULL 17 521 ln(YCPUE+1)=factor(y) 17 517 ln(YCPUE+1)=factor(y)+S(m) 17 265 ln(YCPUE+1)=factor(y)+S(m)+S(Llon) 17 180 ln(YCPUE+1)=factor(y)+S(m)+S(Llon)+S(Llat) 17 098 ln(YCPUE+1)=factor(y)+S(m)+S(Llon)+S(Llat)+S(prec) 17 077 ln(YCPUE+1)=factor(y)+S(m)+S(Llon)+S(Llat)+S(prec)+S(SSS) 17 020 ln(YCPUE+1)=factor(y)+S(m)+S(Llon)+S(Llat)+S(prec)+S(SSS)+S(TSS) 16 933 围网
Purse-seineln(YCPUE+1)=NULL 11 161 ln(YCPUE+1)=factor(y) 10 481 ln(YCPUE+1)=factor(y)+S(Llon) 10 473 ln(YCPUE+1)=factor(y)+S(Llon)+S(Llat) 10 469 ln(YCPUE+1)=factor(y)+S(Llon)+S(Llat)+S(prec) 10 430 ln(YCPUE+1)=factor(y)+S(Llon)+S(Llat)+S(prec)+S(SSS) 10 390 ln(YCPUE+1)=factor(y)+S(Llon)+S(Llat)+S(prec)+S(SSS)+S(TSS) 10 352 延绳钓
Longlineln(YCPUE+1)=NULL −1 150 ln(YCPUE+1)=factor(y) −1 200 ln(YCPUE+1)=factor(y)+S(m) −1 284 ln(YCPUE+1)=factor(y)+S(m)+S(Llat) −1 462 ln(YCPUE+1)=factor(y)+S(m)+S(Llat)+S(SSS) −1 483 ln(YCPUE+1)=factor(y)+S(m)+S(Llat)+S(SSS)+S(TSS) −1 501 表 3 各影响因子对3种作业方式鲣CPUE的影响
Table 3. Effects of environmental factors on CPUE of three fishing methods for skipjack
作业方式
Fishing method月份
m经度
Llon纬度
Llat降水
Pprec海表面盐度
SSS海表面温度
TSS双拖
Pair trawler自由度 DF 8.93 7.9 2.11 7.05 7.88 8.44 F 10.59 7.13 12.22 4.44 8.62 8.9 P <2×10−16 *** <2×10−16 *** 6.61×10−5 *** 1.85×10−5 *** <2×10−16 *** <2×10−16 *** 围网
Purse-seine自由度 DF — 6.27 5.7 5.07 6.93 7.63 F — 3.02 2.72 2.78 6.63 1.86 P — 0.003 50** 0.007 86** 0.014 03* < 2×10−16*** 0.039 41* 延绳钓
Longline自由度 DF 6.04 5.57 7.83 4.6 6.01 4.66 F 3.85 2.75 17.56 2.11 2.36 2.26 P < 2×10−16*** — < 2×10−16*** — 0.000 698*** 0.000 389*** 注:***. P<0.001;*. P<0.05。 Note: ***. P<0.001; *. P<0.05. -
[1] COLLETE B B. FAO species catalogue, Vol 2. Scombrids of the world: an annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date[J]. FAO Fish Synop, 1983, 125: 1-137. [2] ZAINUDDIN M. Skipjack tuna in relation to sea surface temperature and chlorophyll-a concentration of Bone Bay using remotely sensed satellite data[J]. J Ilmu Teknol Kelaut, 2011, 3(1): 82-90. [3] 陈洋洋, 陈新军, 郭立新, 等. 基于捕捞努力量的中西太平洋鲣鱼围网渔业入渔预测分析[J]. 海洋学报, 2017, 39(10): 32-45. [4] KIM J, NA H, PARK Y G, et al. Potential predictability of skipjack tuna (Katsuwonus pelamis) catches in the Western Central Pacific[J]. Sci Rep, 2020, 10(1): 3193-3199. doi: 10.1038/s41598-020-59947-8 [5] DRUON J, CHASSOT E, MURUA H, et al. Preferred feeding habitat of skipjack tuna in the eastern central Atlantic and western Indian Oceans: relations with carrying capacity and vulnerability to purse seine fishing[C]. Seychelles: IOTC Proceedings. 2016: 18-31. [6] YEN K W, LU H J, HSIEH C H. Using remote sensing and catch data to detect ocean hot spots for skipjacks in the western central Pacific Ocean[J]. 台湾水产学会刊, 2012, 39(4): 235-246. [7] 朱若雅, 许子安, 汪金涛, 等. 基于捕捞努力量的中西太平洋鲣鱼栖息地适宜性指数模型优化[J]. 广东海洋大学学报, 2022, 42(6): 81-87. [8] HSU T Y, CHANG Y, LEE M A, et al. Predicting skipjack tuna fishing grounds in the Western and Central Pacific Ocean based on high-spatial-temporal-resolution satellite data[J]. Remote Sens, 2021, 13(5): 861-877. doi: 10.3390/rs13050861 [9] 方舟, 陈洋洋, 陈新军, 等. 基于不同环境因子的中西太平洋鲣鱼资源丰度灰色预测模型构建[J]. 海洋学研究, 2018, 36(4): 60-67. [10] PUTRI A, ZAINUDDIN M. Impact of climate changes on skipjack tuna (Katsuwonus pelamis) catch during May-July in the Makassar Strait[J]. IOP Conf Ser:Earth Environ Sci, 2019, 253(1): 1-8. [11] 冯虎年, 陆化杰, 汪金涛. 中西太平洋围网鲣鱼CPUE时空分布与环境因子关系[J]. 广东海洋大学学报, 2023, 43(1): 33-40. [12] LEHODEY P, SENINA I, CALMETTES B, et al. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries[J]. Climatic Change, 2013, 119: 95-109. doi: 10.1007/s10584-012-0595-1 [13] 李亚楠, 陈新军. 印度洋鲣鱼围网资源渔场时空变化及其与ENSO的关系[J]. 海洋学报, 2017, 39(4): 72-78. [14] DUERI S, BOPP L, MAURY O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Global Change Biol, 2014, 20(3): 742-753. doi: 10.1111/gcb.12460 [15] DRUON J N, CHASSOT E, MURUA H, et al. Skipjack tuna availability for purse seine fisheries is driven by suitable feeding habitat dynamics in the Atlantic and Indian Oceans[J]. Front Mar Sci, 2017, 4: 315-332. doi: 10.3389/fmars.2017.00315 [16] ADLER R F, GU G, SAPIANO M, et al. Global precipitation: means, variations and trends during the satellite era (1979–2014)[J]. Surv Geophys, 2017, 38: 679-699. doi: 10.1007/s10712-017-9416-4 [17] TRENBERTH K E, SHEA D J. Relationships between precipitation and surface temperature[J]. Geophys Res Lett, 2005, 32(14): 1-4. [18] LONG S M, XIE S P, ZHENG X T, et al. Fast and slow responses to global warming: Sea surface temperature and precipitation patterns[J]. J Climate, 2014, 27(1): 285-299. doi: 10.1175/JCLI-D-13-00297.1 [19] MEYNECKE J-O, LEE S Y, DUKE N C, et al. Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia[J]. Estuar Coast Shelf S, 2006, 69(3/4): 491-504. [20] SOBRINO I, SILVA L, BELLIDO J, et al. Rainfall, river discharges and sea temperature as factors affecting abundance of two coastal benthic cephalopod species in the Gulf of Cadiz (SW Spain)[J]. B Mar Sci, 2002, 71(2): 851-865. [21] MINTA S O. An assessment of the vulnerability of Ghana's coastal artisanal fishery to climate change[D]. Troms: Universitetet i Tromsø, 2003: 56. [22] le PAPE O, CHAUVET F, DÉSAUNAY Y, et al. Relationship between interannual variations of the river plume and the extent of nursery grounds for the common sole (Solea solea, L. ) in Vilaine Bay. Effects on recruitment variability[J]. J Sea Res, 2003, 50(2/3): 177-185. [23] GILLSON J, SCANDOL J, SUTHERS I. Estuarine gillnet fishery catch rates decline during drought in eastern Australia[J]. Fish Res, 2009, 99(1): 26-37. doi: 10.1016/j.fishres.2009.04.007 [24] 罗丽, 戴长雷, 李梦玲, 等. 基于GIS的黑龙江省多年平均降水量空间插值分析比较[J]. 吉林水利, 2021(10): 9-16. [25] 方舟, 陈洋洋, 陈新军, 等. 基于不同模型研究环境因子对中西太平洋鲣资源丰度的影响[J]. 中国水产科学, 2018, 25(5): 1123-1130. [26] RODRIGUES M, de LA RIVA J, FOTHERINGHAM S. Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression[J]. Appl Geogr, 2014, 48: 52-63. doi: 10.1016/j.apgeog.2014.01.011 [27] 谢笑艳, 汪金涛, 陈新军, 等. 南印度洋长鳍金枪鱼渔获率与水深温度关系研究[J]. 南方水产科学, 2021, 17(5): 86-92. [28] 孙健勋. 结合环境因子的基里巴斯鲣鱼围网渔场兼捕现状及对策分析[D]. 上海: 上海海洋大学, 2022: 4. [29] MAHADURAGE I G R. Environmental effect on the skipjack tuna (Katsuwonus pelamis) fishery in the Sri Lankan waters[D]. Busan: Pukyong National University, 2016: 19. [30] ROUGERIE F, CHABANNE J. Relationship between tuna and salinity in tahitian coastal waters[J]. TO-AN, 1983, 17: 12-13. [31] 杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学报, 2010, 25(1): 34-40. [32] 韩保平, 方海, 阮雯. 毛里塔尼亚海洋渔业概况[J]. 现代渔业信息, 2011, 26(4): 20-23. [33] NEILL W H, CHANG R K, DIZON A E. Magnitude and ecological implications of thermal inertia in skipjack tuna, Katsuwonus pelamis (Linnaeus)[J]. Environ Biol Fish, 1976, 1: 61-80. doi: 10.1007/BF00761729 [34] GRANDE M, MURUA H, ZUDAIRE I, et al. Reproductive timing and reproductive capacity of the skipjack tuna (Katsuwonus pelamis) in the western Indian Ocean[J]. Fish Res, 2014, 156: 14-22. doi: 10.1016/j.fishres.2014.04.011 [35] MCBRIDE R S, SOMARAKIS S, FITZHUGH G R, et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies[J]. Fish Fish, 2015, 16(1): 23-57. doi: 10.1111/faf.12043 [36] FONTENEAU A, HALLIER J P. Fifty years of dart tag recoveries for tropical tuna: a global comparison of results for the western Pacific, eastern Pacific, Atlantic, and Indian Oceans[J]. Fish Res, 2015, 163: 7-22. doi: 10.1016/j.fishres.2014.03.022 [37] GRAHAM J B, DICKSON K A. Tuna comparative physiology[J]. J Exp Biol, 2004, 207(23): 4015-4024. doi: 10.1242/jeb.01267 [38] LOUKOS H, MONFRAY P, BOPP L, et al. Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results[J]. Fish Oceanogr, 2003, 12(4/5): 474-482. [39] DONEY S C. The growing human footprint on coastal and open-ocean biogeochemistry[J]. Sci, 2010, 328(5985): 1512-1516. doi: 10.1126/science.1185198 [40] NAJJAR R G, PYKE C R, ADAMS M B, et al. Potential climate-change impacts on the Chesapeake Bay[J]. Estuar Coast Shelf S, 2010, 86(1): 1-20. doi: 10.1016/j.ecss.2009.09.026 [41] RABALAIS N N, TURNER R E, DÍAZ R J, et al. Global change and eutrophication of coastal waters[J]. ICES J Mar Sci, 2009, 66(7): 1528-1537. doi: 10.1093/icesjms/fsp047 [42] WHITEHEAD P G, WILBY R L, BATTARBEE R W, et al. A review of the potential impacts of climate change on surface water quality[J]. Hydrolog Sci J, 2009, 54(1): 101-123. doi: 10.1623/hysj.54.1.101 [43] DONEY S C, RUCKELSHAUS M, EMMETT DUFFY J, et al. Climate change impacts on marine ecosystems[J]. Annu Rev Mar Sci, 2012, 4: 11-37. doi: 10.1146/annurev-marine-041911-111611 [44] 吴越, 沈建林, 黄洪亮, 等. 毛里塔尼亚头足类资源及渔业现状[J]. 渔业信息与战略, 2017, 32(3): 217-224. [45] BLABER S, BLABER T. Factors affecting the distribution of juvenile estuarine and inshore fish[J]. J Fish Biol, 1980, 17(2): 143-162. doi: 10.1111/j.1095-8649.1980.tb02749.x [46] 胡奎伟, 朱国平, 王学昉, 等. 中西太平洋鲣鱼丰度的时空分布及其与表温的关系[J]. 海洋渔业, 2011, 33(4): 417-422. [47] LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49(1/2/3/4): 439-468. [48] ERAUSKIN-EXTRAMIANA M, ARRIZABALAGA H, HOBDAY A J, et al. Large-scale distribution of tuna species in a warming ocean[J]. Global Change Biol, 2019, 25(6): 2043-2060. doi: 10.1111/gcb.14630 [49] ARRIZABALAGA H, DUFOUR F, KELL L, et al. Global habitat preferences of commercially valuable tuna[J]. Deep-Sea Res II, 2015, 113: 102-112. doi: 10.1016/j.dsr2.2014.07.001 [50] NIHIRA A. Studies on the behavioral ecology and physiology of migratory fish schools of skipjack tuna (Katsuwonus pelamis) in the oceanic frontal area [Japan][J]. Bulletin of Tohoku National Fisheries Research Institute (Japan), 1996, 58: 137-233. [51] 魏广恩, 陈新军. 不同环境模态下空间分辨率对北太平洋柔鱼CPUE标准化的影响[J]. 海洋科学, 2021, 45(4): 147-158. [52] 宋利明, 许回. 金枪鱼延绳钓渔获性能研究进展[J]. 中国水产科学, 2021, 28(7): 925-937. -
计量
- 文章访问数: 59
- 被引次数: 0