留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江鲟幼鱼黏液、肠道内容物及其养殖水体的微生物菌群结构和潜在病原菌分析

田甜 张建明 朱欣 张德志 舒婷婷

田甜, 张建明, 朱欣, 张德志, 舒婷婷. 长江鲟幼鱼黏液、肠道内容物及其养殖水体的微生物菌群结构和潜在病原菌分析[J]. 南方水产科学. doi: 10.12131/20230092
引用本文: 田甜, 张建明, 朱欣, 张德志, 舒婷婷. 长江鲟幼鱼黏液、肠道内容物及其养殖水体的微生物菌群结构和潜在病原菌分析[J]. 南方水产科学. doi: 10.12131/20230092
TIAN Tian, ZHANG Jianming, ZHU Xin, ZHANG Dezhi, SHU Tingting. Analysis of microbiammunl coity structure and potential pathogens in mucus, intestinal content of Acipenser dabryanus and culture water[J]. South China Fisheries Science. doi: 10.12131/20230092
Citation: TIAN Tian, ZHANG Jianming, ZHU Xin, ZHANG Dezhi, SHU Tingting. Analysis of microbiammunl coity structure and potential pathogens in mucus, intestinal content of Acipenser dabryanus and culture water[J]. South China Fisheries Science. doi: 10.12131/20230092

长江鲟幼鱼黏液、肠道内容物及其养殖水体的微生物菌群结构和潜在病原菌分析

doi: 10.12131/20230092
基金项目: 湖北省自然科学基金项目 (2022CFB738)
详细信息
    作者简介:

    田甜:田 甜 (1984—),女,高级工程师,硕士,研究方向为中华鲟、长江鲟等长江珍稀鱼类病害。E-mail: cocotian1234@126.com

  • 中图分类号: S 943

Analysis of microbiammunl coity structure and potential pathogens in mucus, intestinal content of Acipenser dabryanus and culture water

  • 摘要: 长江鲟 (Acipenser dabriyanus) 为中国特有鱼类,已被国际自然保护联盟 (IUCN) 列为极危级 (CR) 物种。通过Illumina高通量测序技术,探究了长江鲟幼鱼黏液、肠道内容物及其养殖水体之间的微生物菌群组成、多样性及动态变化,以期为长江鲟幼鱼健康养殖和病害分析提供参考依据。结果显示:养殖水体微生物多样性最高,黏液次之,肠道内容物最低。黏液和肠道内容物微生物菌群结构更为相似,且可与养殖水体微生物菌群区分开来。在门水平,黏液和肠道内容物均以放线菌门、变形菌门和厚壁菌门为主;养殖水体则以变形菌门、拟杆菌门和厚壁菌门为主。研究还发现7种可能的病原菌在养殖水体和黏液中富集,当鱼体处于应激状态或养殖环境恶化时,可能导致病害发生。BugBase表型预测分析发现,长江鲟幼鱼黏液、肠道内容物及其养殖水体中存在革兰氏阴性菌和阳性菌。其中肠道内容物的优势菌群为革兰氏阳性菌,占比超过60%;黏液和养殖水体的优势菌群均为革兰氏阴性菌,占比分别为60%和70%。在氧气需求方面,黏液和肠道内容物以好氧菌为主,养殖水体以好氧菌和兼性厌氧菌为主。
  • 图  1  样品稀释曲线

    Figure  1.  Rarefaction curves and Shannon curves of different samples

    图  2  黏液、肠道内容物及其养殖水体 OTUs 分布 Venn 图

    Figure  2.  Venn diagram analysis of mucus, intestinal content and culture water

    图  3  黏液、肠道内容物及其养殖水体中微生物的 Alpha 多样性指数间差异检验

    注:*. P<0.05;**. P<0.01;***. P<0.001。

    Figure  3.  Alpha diversity difference test among index groups of mucus, intestinal content and culture water

    图  4  黏液、肠道内容物及养殖水体中微生物的 Beta 多样性

    注:a. PCoA图 (属水平);b. 样本层级聚类树 (属水平)。

    Figure  4.  Beta diversity of bacteria in mucus, intestinal content and culture water

    Note: a. PCoA at genus level; b. Hierarchical clustering tree at genus level.

    图  5  黏液 (a)、肠道内容物 (b) 及养殖水体中 (c) 微生物在门水平的菌群结构组成

    Figure  5.  Dominant species of bacteria in mucus (a), intestinal content (b) and culture water (c) at the phylum level

    图  6  黏液 (a)、肠道内容物 (b) 及养殖水体中 (c) 微生物在属水平的菌群结构组成

    Figure  6.  Dominant species of bacteria in mucus, intestinal content and culture water at genus level

    图  7  属水平下黏液、肠道内容物及其养殖水体中微生物组成热图

    Figure  7.  Heatmap of microbial communities in mucus, intestinal content and culture water at genus level

    图  8  利用BugBase对黏液、肠道内容物及养殖水体中微生物菌群表型进行预测分析

    Figure  8.  Phenotype analysis of bacteria in mucus, intestinal content and culture water by BugBase

  • [1] ELLIS A E. Immunity to bacteria in fish[J]. Fish Shellfish Immunol, 1999, 9(4): 291-308. doi: 10.1006/fsim.1998.0192
    [2] GUARDIOLA F A, CUESTA A, ARIZCUN M, et al. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata)[J]. Fish Shellfish Immunol, 2014, 36(2): 545-551. doi: 10.1016/j.fsi.2014.01.001
    [3] LYONS P P, TURNBULL J F, DAWSON K A, et al. Effects of low-level dietary microalgae supplementation on the intestinal microbiome of farmed rainbow trout Oncorhnchus mykiss (Walbaum)[J]. Aquac Res, 2017, 48(5): 2438-2452. doi: 10.1111/are.13080
    [4] GUPTA V K, KIM M, BAKSHI U, et al. A predictive index for health status using specieslevel gut microbiome profiling[J]. Nat Commun, 2020, 11(1): 4635. doi: 10.1038/s41467-020-18476-8
    [5] GADOIN E, DURAND L, GUILLOU A, et al. Does the composition of the gut bacteriome change during the growth of tuna?[J]. Microorganisms, 2021, 9(6): 1157. doi: 10.3390/microorganisms9061157
    [6] GIATSIS C, SIPKEMA D, SMIDT H, et al. The impact of rearing environment on the development of gut microbiota in tilapia larvae[J]. Sci Rep, 2015(5): 18206.
    [7] 丁红秀, 李忠莹, 刘俊, 等. 不同生境草鱼肠道微生物组成和群落特征分析[J]. 微生物学报, 2021, 61(3): 729-739.
    [8] 樊英, 于晓清, 李乐, 等. 基于16S rRNA 高通量测序分析大泷六线鱼表皮粘液及肠道内容物微生物多样性[J]. 生物技术进展, 2021, 11(1): 79-90.
    [9] 郝佳慧, 蔡伟杰, 李柯懋, 等. 高通量测序分析小头裸裂尻鱼皮肤和肠道的微生物多样性[J]. 微生物学报, 2023, 63(1): 233-250.
    [10] 陈奇, 宋协法, 周广军, 等. 鲟鱼循环水养殖系统中生物滤池的水质变化及微生物群落结构响应[J]. 中国海洋大学学报, 2022, 52(11): 56-66.
    [11] 苟妮娜, 钟明智, 王开锋. 基于16S rRNA高通量测序的野生和养殖多鳞白甲鱼肠道微生物群落组成研究[J]. 西北农业学报, 2021, 30(7): 963-970.
    [12] 叶建勇, 唐金玉, 丁辰龙, 等. 基于高通量测序的克氏原螯虾肠道及其养殖环境菌群结构分析[J]. 青岛农业大学学报 (自然科学版), 2020, 37(2): 129-134.
    [13] 孙立元, 危起伟, 张辉, 等. 基于水声学的长江上游向家坝至宜宾江段鱼类空间分布特征[J]. 淡水渔业, 2014, 44(1): 53-58. doi: 10.3969/j.issn.1000-6907.2014.01.010
    [14] 翟万营. 南极鱼亚目鱼类肠道、皮肤黏液及其生存水环境微生物结构和功能研究[D]. 上海: 上海海洋大学, 2020: 7-121.
    [15] STEPHENS W Z, BURANS A R, STAGAMAN K, et al. The composotion of the zebrafish intestinal microbial community varies across development[J]. ISME J, 2016, 10(3): 644-654. doi: 10.1038/ismej.2015.140
    [16] LIU Q F, LAI Z N, GAO Y, et al. Connection between the gut microbiota of largemouth bass (Micropterus salmoides) and microbiota of the pond culture environment[J]. Microorganisms, 2021, 9(8): 1770. doi: 10.3390/microorganisms9081770
    [17] 李革雷, 陈昌福, 高宇, 等. 3种养殖模式水体中细菌多样性研究[J]. 华中农业大学学报, 2012, 31(3): 381-390. doi: 10.3969/j.issn.1000-2421.2012.03.021
    [18] 熊向英, 赵艳飞, 王志成, 等. 斑点叉尾鮰肠道及其养殖环境菌群结构分析[J]. 水产科学, 2022, 41(4): 589-596.
    [19] 吴欢欢, 王伟继, 吕丁, 等. 应用高通量测序技术分析大菱鲆幼鱼肠道及其养殖环境的微生物群落结构[J]. 渔业科学进展, 2019, 40(4): 84-94.
    [20] 张琛, 王岩, 郑峡飞, 等. 海水网箱养殖花鲈和日本黄姑鱼肠道细菌的多样性[J]. 中国水产科学, 2020, 27(9): 1113-1124.
    [21] LOWREY L, WOODHAMS D C, TACCHI L, et al. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin[J]. Appl Environ Microb, 2015, 81(19): 6915-6925. doi: 10.1128/AEM.01826-15
    [22] 但言, 余凤琴, 李双, 等. 不同生长阶段大口黑鲈肠道微生物多样性研究[J]. 西南农业学报, 2021, 34(12): 2798-2802.
    [23] 刘妮, 彭作刚. 玫瑰高原鳅肠道微生物多样性研究[J]. 水生生物学报, 2021, 45(1): 118-124. doi: 10.7541/2020.2019.169
    [24] HUANG Q, SHAM R C, DENG Y, et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors[J]. Mol Ecol, 2020, 29(24): 5019-5034. doi: 10.1111/mec.15699
    [25] 谭八梅, 王荦, 裴泓霖, 等. 不同季节刺身养殖池塘水样菌群结构与功能特征研究[J]. 渔业科学进展, 2021, 42(3): 77-88.
    [26] 高远, 李甍, 董登攀, 等. 凡纳滨对虾养殖系统中异样和自养型生物絮团的微生物特性及其与养殖水环境的关系[J]. 中国水产科学, 2022, 29(6): 864-873. doi: 10.12264/JFSC2021-0356
    [27] 黄薇, 周华书, 刘兰英, 等. 鲟鳇鱼网箱养殖环境微生物菌群结构及潜在病原菌分析[J]. 水生生物学报, 2021, 45(6): 1255-1263.
    [28] COTTRELLl M T, KIRCHMAN D L. Nature assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-molecular and high-molecular weight dissolved organic matter[J]. Appl Environ Microb, 2000, 66(4): 1692-1697. doi: 10.1128/AEM.66.4.1692-1697.2000
    [29] KLASE G, LEE S, LIANG S, et al. The microbiome and antibiotic resistance in integrated fishfarm water: implications of environmental public health[J]. Sci Total Environ, 2019, 649: 1491-1501. doi: 10.1016/j.scitotenv.2018.08.288
    [30] 施云芬, 郑蕾, 马慧, 等. 脉冲水解酸化-A/O生物反应器处理石化废水的中试研究及微生物群落结构解析[J]. 科技导报, 2017, 35(23): 39-45.
    [31] CHEN J, ROBB C S, UNFRIED F, et al. Alpha- and beta-mannan utilization by marine Bacteroidetes[J]. Environ Microbiol, 2018, 20(11): 4127-4140. doi: 10.1111/1462-2920.14414
    [32] 高晓华, 张海强, 安伟. 凡纳滨对虾急性肝胰腺坏死病致病菌的分离鉴定、药敏特性及其组织病理学观察[J]. 淡水渔业, 2022, 52(3): 82-90.
    [33] 徐春霞. 网箱养殖大黄鱼内脏白点病病原菌分离鉴定及致病性研究[J]. 水产科学, 2021, 40(5): 670-678.
    [34] 张建明, 田甜, 张德志. 中华鲟幼鱼细菌性烂鳃病的诊断与治疗[J]. 水产科技情报, 2017, 44(5): 245-247.
    [35] DI J, ZHANG S H, HUANG J, et al. Isolation and identification of pathogens causing haemorrhagic septicaemia in cultured Chinese sturgeon (Acipenser sinensis)[J]. Aquac Res, 2018, 49(11): 3624-3633. doi: 10.1111/are.13830
    [36] 王文龙. 嗜水气单胞菌在西伯利亚鲟体内的分布及其引起的病理学变化[D]. 成都: 四川农业大学, 2010: 28-35.
    [37] 刘亚, 杨锐, 陈叶雨, 等. 达氏鲟维氏气单胞菌的分离鉴定及组织学观察[J]. 南方农业学报, 2018, 49(6): 1235-1241. doi: 10.3969/j.issn.2095-1191.2018.06.28
    [38] YANG R, LIU Y, WANG Y, et al. Pathogenesis and pathological analysis of Edwardsiella tarda from Dabry's sturgeon (Acipenser dabryanus) in China[J]. Aquaculture, 2018, 495: 637-642. doi: 10.1016/j.aquaculture.2018.04.010
    [39] 杨移斌, 夏永涛, 赵蕾, 等. 鲟源弗氏柠檬酸杆菌分离鉴定及药敏特性研究[J]. 水生生物学报, 2013, 37(4): 766-771.
    [40] 杨圆圆, 杨移斌, 曹海鹏, 等. 杂交鲟源恶臭假单胞菌的分离鉴定及药敏特性研究[J]. 浙江农业学报, 2017, 29(12): 1978-1985. doi: 10.3969/j.issn.1004-1524.2017.12.04
    [41] 杨移斌, 杨秋红, 刘永涛, 等. 俄罗斯鲟停乳链球菌停乳亚种分离、鉴定及其药敏特性研究[J]. 中国预防兽医学报, 2017, 39(9): 717-721.
    [42] SHARIFPOUR I, SOLTANI M, MAZANDARAN M. Histopathological features of infection by Streptococcus iniae in Persian sturgeon, Acipenser persicus[J]. J Aquat Anim Health, 2020, 6(2): 39-48. doi: 10.52547/ijaah.6.2.39
    [43] PATE M, JENCIC V, ZOLNIR-DOVC M, et al. Detection of mycobacteria in aquarium fish in Slovenia by culture and molecular methods[J]. Dis Aquat Organ, 2005, 64(1): 29-35.
    [44] ANTUOFERMO E, PAIS A, NUVOLI S, et al. Mycobacterium chelonae associated with tumor-like skin and oral masses in farmed Russian sturgeons (Acipenser gueldenstaedtii)[J]. BMC Vet Res, 2014, 10: 18. doi: 10.1186/1746-6148-10-18
    [45] ZHANG Q Q, WANG X H, ZHANG D F, et al. De novo assembly and analysis of Amur sturgeon (Acipenser schrenkii) transcriptome in response to Mycobacterium marinum infection to identify patative genes involved in immunity[J]. J Microbiol Biontechn, 2019, 29(8): 1324-1334. doi: 10.4014/jmb.1903.03034
    [46] 阮瑞, 吴金平, 李营, 等. 人工养殖下达氏鰉幼鱼肠道菌群组成分析[J]. 淡水渔业, 2018, 48(5): 93-98. doi: 10.3969/j.issn.1000-6907.2018.05.015
    [47] 樊英, 王友红, 姬广磊, 等. 基于宏基因组测序技术揭示大泷六线鱼肠道微生物特征[J]. 微生物学报, 2023, 63(1): 357-375. doi: 10.13343/j.cnki.wsxb.20220338
    [48] KIM M, QIE Y, PARK J, et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host Microbe, 2016, 20(2): 202-214. doi: 10.1016/j.chom.2016.07.001
    [49] SPOR A, KOREN O, LEY R. Unravelling the effects of the environment and host genotype on the gut microbiome[J]. Nat Rev Micribiol, 2011, 9(4): 279-290. doi: 10.1038/nrmicro2540
    [50] 王艳芳. 滇黄精多糖改善大鼠脂代谢紊乱的作用研究[D]. 昆明: 云南中医学院, 2017: 41-52.
    [51] LOUIS P, FLINT H J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. FEMS Microbiol Lett, 2009, 294(1): 1-8. doi: 10.1111/j.1574-6968.2009.01514.x
  • 加载中
计量
  • 文章访问数:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-06-01
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-07-27

目录

    /

    返回文章
    返回