留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发

杨尉 司圆圆 许瑞雯 陈兴汉

杨尉, 司圆圆, 许瑞雯, 陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发[J]. 南方水产科学, 2023, 19(5): 123-133. doi: 10.12131/20230086
引用本文: 杨尉, 司圆圆, 许瑞雯, 陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发[J]. 南方水产科学, 2023, 19(5): 123-133. doi: 10.12131/20230086
YANG Wei, SI Yuanyuan, XU Ruiwen, CHEN Xinghan. Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data[J]. South China Fisheries Science, 2023, 19(5): 123-133. doi: 10.12131/20230086
Citation: YANG Wei, SI Yuanyuan, XU Ruiwen, CHEN Xinghan. Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data[J]. South China Fisheries Science, 2023, 19(5): 123-133. doi: 10.12131/20230086

基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发

doi: 10.12131/20230086
基金项目: 广东省自然科学基金项目 (2022A1515011231);广东省普通高校创新团队项目 (2021KCXTD054);广东省农业科技社会化服务与成果集成示范项目 (2023B0202010011);广东省农业农村厅农业科研类及技术推广示范类项目 (0202020014);阳江职业技术学院自然科学重点项目 (2022kjzd01)
详细信息
    作者简介:

    杨尉:杨 尉 (1984—),男,讲师,博士,研究方向为水产动物种质资源创新。E-mail: yangwei516@163.com

    通讯作者:

    陈兴汉 (1978—),男,教授,博士,研究方向为海洋河口渔业资源保护与利用。E-mail: chenxh1978@163.com

  • 中图分类号: S 917.4

Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data

  • 摘要: 为了解疣吻沙蚕 (Tylorrhynchus heterochaetus) 基因组信息并高效地开发微卫星标记,指导其种质资源保护与新品种的遗传改良研究,采用低深度高通量测序开展全基因组survey,k-mer分析估计疣吻沙蚕基因组大小为759.53 Mb,杂合率1.41%,重复序列比例45.92%;初步组装获得2 181 621条scaffold,全长为840 375 821 bp。在基因组序列中检测到130 216个微卫星位点,丰度为154.9 个·Mb−1。微卫星重复次数集中在4~18拷贝;单碱基重复比例最高 (35.00%),二碱基 (32.48%)、三碱基 (14.42%) 次之;二碱基、三碱基优势基序分别是AT/AT、AAT/ATT,表现出A/T碱基优势。从随机挑选的50对引物中筛选到15对多态标记,在30尾样本中共检测到87个等位基因,等位基因数 (Na) 为2.000~12.000 (平均5.800),有效等位基因数 (Ne) 为1.164~6.713 (平均3.328),期望杂合度 (He) 为0.141~0.789 (平均0.561),多态信息含量 (PIC) 为0.136~0.776 (平均0.511);其中13个为高度或中度多态性位点,在遗传分析中有较高的实用价值。结果表明,疣吻沙蚕基因组为复杂基因组,其微卫星位点类型丰富且具备良好的多态性潜能,可为种质资源评价、群体遗传学及分子育种研究提供有效的标记资源。
  • 图  1  疣吻沙蚕基因组 k-mer 种类频率分布

    Figure  1.  Frequency distribution of k-mer species in genome of T. heterochaetus

    图  2  疣吻沙蚕基因组 6 种类型微卫星的数量与比例

    Figure  2.  Number and proportion of six motif types of microsatellite loci in genome of T. heterochaetus

    图  3  疣吻沙蚕基因组微卫星重复数分布特征

    Figure  3.  Distribution pattern of microsatellite repeat number in genome of T. heterochaetus

    图  4  疣吻沙蚕基因组微卫星重复基序类型分布特征

    Figure  4.  Distribution pattern of microsatellite motif types in genome of T. heterochaetus

    图  5  疣吻沙蚕基因组微卫星长度分布特征

    注:a. 不同长度区间微卫星数量及比例;b. 不同类型微卫星长度分布特征。

    Figure  5.  Distribution pattern of length of microsatellite loci genome of T. heterochaetus

    Note: a. Number and percentage of microsatellite loci at different length intervals; b. Length distribution of the six motif types of microsatellite loci.

    图  6  部分多态微卫星标记的毛细管电泳分型结果

    Figure  6.  A set of polymorphic microsatellite loci visualized by high-resolution capillary electrophoresis

    表  1  疣吻沙蚕基因组 survey 测序数据统计

    Table  1.   Statistics of genomic survey sequencing data of T. heterochaetus

    测序文库
    Sequencing library
    原始数据量
    Raw base/Gb
    有效数据比
    Effective rate/%
    有效数据量
    Clean base/Gb
    碱基错误率
    Error rate/%
    Q20/% Q30/% GC 含量
    GC content/%
    L1 33.12 99.68 33.01 0.04 96.23 90.77 39.13
    L2 24.53 99.75 24.47 0.05 94.88 88.63 39.00
    总计 Total 57.65 57.48
    均值 Mean 99.72 0.05 95.56 89.70 39.07
    下载: 导出CSV

    表  2  疣吻沙蚕 15 对多态微卫星引物信息

    Table  2.   Information of 15 polymorphic microsatellite loci in genome of T. heterochaetus

    位点
    Locus
    引物序列 (5'—3')
    Primer sequence (5'–3')
    重复单元
    Repeat unit
    产物大小
    Size/bp
    退火温度
    Annealing temperature/℃
    ThGM004 F: TGCTGCTACTGCTACAGCTACTATG (TAC)18 289 60.0
    R: CTGACAAAGTTTGGTGGCTG
    ThGM006 F: TGAAAATTAGTGTGATTTTGTCCC (CA)11 260 59.0
    R: AGCCAACCAGAACATGAACA
    ThGM011 F: AACTTGGACTAAGGCTATCAAAAA (AG)17 220 59.0
    R: CTTGGGGTTCATGCATCATT
    ThGM015 F: TTGGTTGTTATCCATGCACC (TAT)12 279 59.5
    R: AGACAGCAGTGAAATAGCACCA
    ThGM017 F: ATTCGATAAGCATTCCACCG (ATGG)8 215 60.0
    R: CTTGGTAGCTGGCCTGTCTC
    ThGM021 F: TGCGAAATGAGAAGTGAGCA (TA)10 277 60.0
    R: TGCCTGTGTGGAATACCAAG
    ThGM024 F: ACCTGTCCACCCGTCATTTA (TAT)14 294 59.5
    R: CCTTTAGGGGATGGCTACAA
    ThGM029 F: GAGCAAAATATTCAAGTTGGCA (ATT)12 243 59.0
    R: TTGTTTGTCATATCTTCTAAAGAGCA
    ThGM033 F: GGAGTGGGGAGGATTTTAGC (TG)18 277 60.0
    R: CCATGTACAGCATTCAGCCA
    ThGM035 F: GTAAGGGCAAGGGTTGTGAA (AG)13 226 60.0
    R: ACCGTTACCCTAACCCCAAC
    ThGM038 F: TTACCCTGCCATCCTACCAG (TG)20 157 60.0
    R: CTATTCTGCCAGTGGTCGCT
    ThGM040 F: GGATCCAGAAGGGGTAAAGC (TTA)11 239 59.5
    R: GTTGGTCATGTTCCTGTTGC
    ThGM041 F: ACCAGCTGCTAGAGGCAGAC (ATG)7 260 60.0
    R: TTAGGTCCTCACCCAGGGAT
    ThGM043 F: AAAAGCAAGTGGTAACACAAAATG (TCAT)11 272 59.5
    R: CATTGGGCTCTGGGAATAAA
    ThGM047 F: CGACCTGCGGATTTAATTTG (TGG)12 148 60.0
    R: ATATCTTGGCGGCGGATAG
    注:F. 正向引物;R. 反向引物。 Note: F. Forward primer; R. Reverse primer.
    下载: 导出CSV

    表  3  15 个多态微卫星位点在疣吻沙蚕群体中的遗传特征

    Table  3.   Genetic characteristics of 15 polymorphic microsatellite loci in a T. heterochaetus population

    位点 Locus 等位基因数 Na 有效等位基因数 Ne 观测杂合度 Ho 期望杂合度 He 多态信息含量 PIC 哈迪-温伯格平衡的PPHWE
    ThGM004 12 6.672 0.697 0.775 0.726 0.275
    ThGM006 4 1.642 0.367 0.388 0.372 0.001*
    ThGM011 5 1.608 0.257 0.349 0.377 0.026*
    ThGM015 8 4.933 0.438 0.789 0.776 0.225
    ThGM017 3 1.521 0.066 0.271 0.245 0.148
    ThGM021 2 1.593 0.367 0.508 0.375 1.000
    ThGM024 11 6.713 0.879 0.742 0.682 0.541
    ThGM029 10 5.647 0.697 0.658 0.599 0.140
    ThGM033 5 3.102 0.167 0.772 0.720 0.069
    ThGM035 3 2.164 0.050 0.141 0.136 0.086
    ThGM038 8 4.878 0.576 0.545 0.489 0.221
    ThGM040 4 2.441 0.733 0.718 0.652 0.008*
    ThGM041 3 2.155 0.417 0.431 0.336 0.503
    ThGM043 5 2.727 0.724 0.682 0.617 0.148
    ThGM047 4 2.224 0.867 0.642 0.569 0.267
    均值 Mean 5.800 3.328 0.487 0.561 0.511
    注:*. Bonferroni法校正后显著偏离哈迪-温伯格平衡(P<0.05);n=30。 Note: *. Significant departure from Hardy-Weinberg equilibrium after Bonferroni's correction (P<0.05);n=30.
    下载: 导出CSV
  • [1] YANG Z Q, SUNIL C, JAYACHANDRAN M, et al. Anti-fatigue effect of aqueous extract of Hechong (Tylorrhynchus heterochaetus) via AMPK linked pathway[J]. Food Chem Toxicol, 2020, 135: 111043. doi: 10.1016/j.fct.2019.111043
    [2] 苏跃朋, 黄啟, 崔阔鹏. 珠江河口区禾虫产业技术现状及增养殖效益分析[J]. 海洋与渔业, 2016(10): 64-67.
    [3] ZHANG W X, WANG Z X, GANESAN K, et al. Antioxidant activities of aqueous extracts and protein hydrolysates from marine worm Hechong (Tylorrhynchus heterochaeta)[J]. Foods, 2022, 11(13): 1837. doi: 10.3390/foods11131837
    [4] 杨尉, 陈兴汉. 疣吻沙蚕-水稻生态复合种养技术要点及效益分析[J]. 南方农业, 2022, 16(20): 17-20, 24.
    [5] CHEN X H, YANG S, YANG W, et al. First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam[J]. Zool Res, 2020, 41(1): 61-69. doi: 10.24272/j.issn.2095-8137.2020.006
    [6] CHEN X H, LI M M, LIU H P, et al. Mitochondrial genome of the polychaete Tylorrhynchus heterochaetus (Phyllodocida, Nereididae)[J]. Mitochondrial DNA A, 2016, 27(5): 3372-3373. doi: 10.3109/19401736.2015.1018226
    [7] CHEN H, LI X, WANG Y, et al. De novo transcriptomic characterization enables novel microsatellite identification and marker development in Betta splendens[J]. Life, 2021, 11(8): 803. doi: 10.3390/life11080803
    [8] 孙效文, 张晓锋, 赵莹莹, 等. 水产生物微卫星标记技术研究进展及其应用[J]. 中国水产科学, 2008, 15(4): 689-703.
    [9] 张永德, 文露婷, 罗洪林, 等. 卵形鲳鲹基因组调研及其SSR分子标记的开发应用[J]. 南方农业学报, 2020, 51(5): 983-994.
    [10] 上官清, 陈昆慈, 刘海洋, 等. 斑鳢基因组中微卫星分布特征及野生种群遗传结构分析[J]. 南方水产科学, 2020, 16(3): 47-60.
    [11] LIU B H, SHI Y J, YUAN J Y, et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects[J]. Quant Biol, 2013, 35(s1-3): 62-67.
    [12] LUO R B, LIU B H, XIE Y L, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1): 18. doi: 10.1186/2047-217X-1-18
    [13] LALITHA S. Primer premier 5[J]. Biotech Softw Internet Rep, 2000, 1(6): 270-272. doi: 10.1089/152791600459894
    [14] 刘玉萍, 王棋, 黄新芯, 等. 基于高通量测序的带鱼肌肉组织转录组微卫星信息分析[J]. 南方农业学报, 2022, 53(3): 725-734.
    [15] PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537-2539. doi: 10.1093/bioinformatics/bts460
    [16] TEMNYKH S, DECLERCK G, LUKASHOVA A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential[J]. Genome Res, 2001, 11(8): 1441-1452. doi: 10.1101/gr.184001
    [17] SIMAKOV O, MARLETAZ F, CHO S J, et al. Insights into bilaterian evolution from three spiralian genomes[J]. Nature, 2013, 493(7433): 526-531. doi: 10.1038/nature11696
    [18] TONG L, DAI S X, KONG D J, et al. The genome of medicinal leech (Whitmania pigra) and comparative genomic study for exploration of bioactive ingredients[J]. BMC Genom, 2022, 23(1): 76. doi: 10.1186/s12864-022-08290-5
    [19] MARTÍN-ZAMORA F M, LIANG Y, GUYNES K, et al. Annelid functional genomics reveal the origins of bilaterian life cycles[J]. Nature, 2023, 615(7950): 105-110. doi: 10.1038/s41586-022-05636-7
    [20] de OLIVEIRA A L, MITCHELL J, GIRGUIS P, et al. Novel insights on obligate symbiont lifestyle and adaptation to chemosynthetic environment as revealed by the giant tubeworm genome[J]. Mol Biol Evol, 2022, 39(1): msab347. doi: 10.1093/molbev/msab347
    [21] LI Y, TASSIA M G, WAITS D S, et al. Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi[J]. BMC Biol, 2019, 17(1): 91. doi: 10.1186/s12915-019-0713-x
    [22] JIN F, ZHOU Z L, GUO Q, et al. High-quality genome assembly of Metaphire vulgaris[J]. PeerJ, 2020, 8: e10313. doi: 10.7717/peerj.10313
    [23] ZAKAS C, HARRY N D, SCHOLL E H, et al. The genome of the poecilogonous Annelid Streblospio benedicti[J]. Genome Biol Evol, 2022, 14(2): evac008. doi: 10.1093/gbe/evac008
    [24] SHAO Y, WANG X B, ZHANG J J, et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration[J]. Nat Commun, 2020, 11(1): 2656. doi: 10.1038/s41467-020-16454-8
    [25] ZWARYCZ A S, NOSSA C W, PUTNAM N H, et al. Timing and scope of genomic expansion within Annelida: evidence from homeoboxes in the genome of the earthworm Eisenia fetida[J]. Genome Biol Evol, 2016, 8(1): 271-281. doi: 10.1093/gbe/evv243
    [26] KENNY N J, NAMIGAI E K O, MARLÉTAZ F, et al. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida)[J]. Mar Genom, 2015, 24(2): 139-146.
    [27] SUN Y N, SUN J, YANG Y, et al. Genomic signatures supporting the symbiosis and formation of chitinous tube in the deep-sea tubeworm Paraescarpia echinospica[J]. Mol Biol Evol, 2021, 38(10): 4116-4134. doi: 10.1093/molbev/msab203
    [28] 高胜寒, 禹海英, 吴双阳, 等. 复杂基因组测序技术研究进展[J]. 遗传, 2018, 40(11): 944-963.
    [29] 徐杰杰, 毕宜慧, 程景颢, 等. 中华绒螯蟹 (Eriocheir sinensis) 全基因组微卫星分布特征研究[J]. 基因组学与应用生物学, 2021, 40(Z2): 2422-2429.
    [30] 梁霞, 王慧琪, 马宇璇, 等. 鲤鱼(Cyprinus carpio)全基因组微卫星分布特征研究[J]. 南京师大学报 (自然科学版), 2021, 44(3): 103-111.
    [31] ZHANG Q, ZHANG C S, YU Y, et al. Characteristic analysis of simple sequence repeats in the ridgetail white prawn Exopalaemon carinicauda genome and its application in parentage assignment[J]. J World Aquacult Soc, 2020, 51(3): 690-701. doi: 10.1111/jwas.12650
    [32] SRIVASTAVA S, KUSHWAHA B, PRAKASH J, et al. Development and characterization of genic SSR markers from low depth genome sequence of Clarias batrachus (Magur)[J]. J Genet, 2016, 95(3): 603-609. doi: 10.1007/s12041-016-0672-8
    [33] 彭冶, 李杰, 王涛, 等. 瓦氏黄颡鱼全基因组微卫星的分布特征及其定位的初步研究[J]. 南方水产科学, 2022, 18(1): 90-98.
    [34] XU S Y, SONG N, XIAO S J, et al. Whole genome survey analysis and microsatellite motif identification of Sebastiscus marmoratus[J]. Biosci Rep, 2020, 40(2): BSR20192252. doi: 10.1042/BSR20192252
    [35] 王九龙, 李洪莉, 尹硕, 等. 绿鳍马面鲀全基因组微卫星分布特征[J]. 烟台大学学报 (自然科学与工程版), 2022, 35(3): 285-293.
    [36] 王佳佳, 王琼, 秦桢, 等. 凡纳滨对虾全基因组SSR标记开发及不同养殖群体的遗传多样性分析[J]. 水产学报, 2023, 47(6): 64-74.
    [37] SUN J X, PENG G H, XIONG L J, et al. Genome-wide SSR marker development and application in genetic diversity analysis of the red swamp crayfish, Procambarus clarkii (Girard, 1852) in China[J]. Crustaceana, 2021, 94(2): 189-205. doi: 10.1163/15685403-bja10076
    [38] 倪守胜, 杨钰, 柳淑芳, 等. 基于高通量测序的虾夷扇贝基因组微卫星特征分析[J]. 渔业科学进展, 2018, 39(1): 107-113.
    [39] 熊良伟, 王帅兵, 岳丽佳, 等. 宽体金线蛭基因组SSR序列特征分析及其分子标记开发[J]. 南方农业学报, 2018, 49(11): 2298-2303.
    [40] LIU H Y, ZHANG Y F, WANG G B, et al. Development and characterization of microsatellite markers in the earthworm Drawida gisti Michaelsen, 1931 and cross-amplification in two other congeners[J]. Mol Biol Rep, 2020, 47(10): 8265-8269. doi: 10.1007/s11033-020-05799-4
    [41] 王斌, 孙静, 刘凌云, 等. 蛭类转录组中EST-SSR分析及抗凝血相关分子标记的挖掘[J]. 中草药, 2017, 48(1): 172-178.
    [42] MADUNA S N, VIVIAN-SMITH A, JÓNSDÓTTIR Ó D B, et al. Genome- and transcriptome-derived microsatellite loci in lumpfish Cyclopterus lumpus: molecular tools for aquaculture, conservation and fisheries management[J]. Sci Rep, 2020, 10(1): 559. doi: 10.1038/s41598-019-57071-w
    [43] 李强勇, 李旻, 曾地刚, 等. 凡纳滨对虾微卫星分子标记的开发及不同养殖家系遗传多态性分析[J]. 南方农业学报, 2020, 51(2): 429-436.
    [44] WIERDL M, DOMINSKA M, PETES T D. Microsatellite instability in yeast: dependence on the length of the microsatellite[J]. Genetics, 1997, 146(3): 769-779. doi: 10.1093/genetics/146.3.769
    [45] JO E, LEE S J, CHOI E, et al. Whole genome survey and microsatellite motif identification of Artemia franciscana[J]. Biosci Rep, 2021, 41(3): BSR20203868. doi: 10.1042/BSR20203868
    [46] SCHLÖTTERER C, TAUTZ D. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Res, 1992, 20(2): 211-215. doi: 10.1093/nar/20.2.211
    [47] 马军, 刘嘉鑫, 江智景, 等. 基于RNA-seq数据的密斑刺鲀SSR分子标记开发及鉴定[J]. 南方水产科学, 2020, 16(1): 127-136.
    [48] 朱维岳, 周桃英, 钟明, 等. 基于遗传多样性和空间遗传结构的野生大豆居群采样策略[J]. 复旦学报 (自然科学版), 2006, 45(3): 321-327.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  30
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 修回日期:  2023-06-29
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-08-14
  • 刊出日期:  2023-10-05

目录

    /

    返回文章
    返回