留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用MaxEnt模型的舟山海域曼氏无针乌贼生境适宜性研究

张漫瑶 石雯静 桂峰 曾宪敏 徐开达 赵晟

张漫瑶, 石雯静, 桂峰, 曾宪敏, 徐开达, 赵晟. 利用MaxEnt模型的舟山海域曼氏无针乌贼生境适宜性研究[J]. 南方水产科学, 2023, 19(5): 22-31. doi: 10.12131/20230080
引用本文: 张漫瑶, 石雯静, 桂峰, 曾宪敏, 徐开达, 赵晟. 利用MaxEnt模型的舟山海域曼氏无针乌贼生境适宜性研究[J]. 南方水产科学, 2023, 19(5): 22-31. doi: 10.12131/20230080
ZHANG Manyao, SHI Wenjing, GUI Feng, ZENG Xianmin, XU Kaida, ZHAO Sheng. Study of suitable habitats for Sepiella maindroni in Zhoushan sea areas based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 22-31. doi: 10.12131/20230080
Citation: ZHANG Manyao, SHI Wenjing, GUI Feng, ZENG Xianmin, XU Kaida, ZHAO Sheng. Study of suitable habitats for Sepiella maindroni in Zhoushan sea areas based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 22-31. doi: 10.12131/20230080

利用MaxEnt模型的舟山海域曼氏无针乌贼生境适宜性研究

doi: 10.12131/20230080
基金项目: 国家重点研发计划“蓝色粮仓科技创新”专项 (2019YFD0901204-04);浙江省属高校基本科研业务费 (2021JD006);浙江省重点研发计划项目 (2019C02056)
详细信息
    作者简介:

    张漫瑶 (1997—),女,硕士研究生,研究方向为海域生境修复。E-mail: moyna1213@163.com

    通讯作者:

    赵 晟 (1973—),男,教授,博士,研究方向为海洋生态学。E-mail: zhaosh@zjou.edu.cn

  • 中图分类号: S 922.9+3

Study of suitable habitats for Sepiella maindroni in Zhoushan sea areas based on MaxEnt model

  • 摘要: 曼氏无针乌贼 (Sepiella maindroni) 具有较高的经济和营养价值,近年因过度捕捞、生境破坏等导致其资源衰退。为了定量评估多元生态因子对曼氏无针乌贼分布的影响,以曼氏无针乌贼的重要产卵地和栖息地—舟山海域为研究区域,基于2017—2021年浙江近海的底拖网调查数据、2021—2022年自主航次的调查数据和全球生物多样性信息机构 (Global Biodiversity Information Facility, GBIF) 数据,利用最大熵 (Maximum Entropy, MaxEnt) 模型分析曼氏无针乌贼的生境适宜性,探索其修复潜力和适生区的空间分布格局。结果表明,海表温度最大值、海表盐度最小值和pH是影响曼氏无针乌贼分布的主要生态因子。曼氏无针乌贼偏向于在海洋表面温度较高、盐度较大的海域活动,且能接受弱碱性环境。当舟山海域内海表温度最大值介于25.5~28.5 ℃、海表盐度最小值介于20‰~30‰、pH介于7.8~8.3时,曼氏无针乌贼存在的概率较大。曼氏无针乌贼在舟山海域的适生区面积分布较广 (30 213.40 km2),占研究区域总面积的75.11%。其中高适生区总体分布在中街山列岛、嵊泗列岛和马鞍列岛,面积为4 600.78 km2。次高适生区、中适生区和低适生区的面积分别为8 205.52、9 723.31和7 683.78 km2。从修复潜力上看,曼氏无针乌贼在舟山海域有较大的恢复潜力。
  • 图  1  曼氏无针乌贼舟山海域的分布点

    Figure  1.  Scatter plot of S. maindroni in Zhoushan sea area

    图  2  ROC 曲线检验模型结果

    Figure  2.  Model results tested by ROC curve

    图  3  刀切法检验生态因子对曼氏无针乌贼分布影响的重要程度

    Figure  3.  Importance of ecological factors on distribution of S. maindroni by Jackknife test

    图  4  生态因子响应曲线

    Figure  4.  Response curves for ecological factors

    图  5  曼氏无针乌贼在舟山海域的适生区分布

    Figure  5.  Distribution of suitable habitat of S. maindroni in Zhoushan Islands

    图  6  舟山海域内海洋特别保护区地理位置图

    Figure  6.  Geographical location map of marine special reserves in Zhoushan sea area

    图  7  渔民捕捞曼氏无针乌贼海域的调研结果

    Figure  7.  Results of a survey on fishing area of S. maindroni

    表  1  筛选出的关键生态因子

    Table  1.   Selected key ecological factors

    生态因子
    Ecological factor
    单位
    Unit
    海流流速最大值 Maximum currents velocity m·s−1
    海流流速最小值 Minimum currents velocity m·s−1
    溶解氧质量浓度最小值 Minimum dissolved oxygen mg·L−1
    底层光照强度最大值 Maximum light at bottom μmol·(m2·s)−1
    硝酸盐质量浓度最大值 Maximum nitrate mg·L−1
    磷酸盐质量浓度最大值 Maximum phytoplankton mg·L−1
    初级生产力最小值 Minimum primary productivity g·(m3·day)−1
    海表盐度最小值 Minimum sea surface salinity
    海表温度最大值 Maximum sea surface temperature
    海表温度最小值 Minimum sea surface temperature
    酸碱度 pH
    下载: 导出CSV

    表  2  生态因子对模型的相对贡献率

    Table  2.   Percent contributions of ecological factors to MaxEnt model

    生态因子
    Ecological factor
    相对贡献率
    Relative
    contribution
    rate/%
    海表温度最大值 Maximum sea surface temperature 27.8
    海表盐度最小值 Minimum sea surface salinity 25.5
    酸碱度 pH 20.3
    初级生产力最小值 Minimum primary productivity 12.2
    磷酸盐质量浓度最大值 Maximum phytoplankton 8.7
    海表温度最小值 Minimum sea surface temperature 2.5
    硝酸盐质量浓度最大值 Maximum nitrate 2.2
    溶解氧质量浓度最小值 Minimum dissolved oxygen 0.4
    底层光照强度最大值 Maximum light at bottom 0.2
    海流流速最大值 Maximum currents velocity 0.2
    海流流速最小值 Minimum currents velocity 0.1
    下载: 导出CSV

    表  3  适生区面积及其占海域面积百分比

    Table  3.   Area of suitable habitat and its percentage of sea area

    区域    
    Area    
    概率
    Probability
    面积
    Square/km2
    占比
    Percentage/%
    高适生区 High-adaptive area 0.8≤P<1 4 600.78 11.44
    次高适生区 Sub-superior suitable area 0.6≤P<0.8 8 205.52 20.40
    中适生区 Middle-adaptive area 0.4≤P<0.6 9 723.31 24.17
    低适生区 Low-adaptive area 0.2≤P<0.4 7 683.78 19.10
    非适生区 Non-adaptive area P<0.2 10 007.89 24.88
    研究区域 Research area 40 221.29 100.00
    下载: 导出CSV
  • [1] RICHARDSON L E, LENFANT P, CLARKE L J, et al. Examining current best-practices for the use of wild post-larvae capture, culture, and release for fisheries enhancement[J]. Front Mar Sci, 2023, 9: 1058497. doi: 10.3389/fmars.2022.1058497
    [2] 钟明, 侍昊, 安树青, 等. 中国野生动物生境适宜性评价和生境破碎化研究[J]. 生态科学, 2016, 35(4): 205-209. doi: 10.14108/j.cnki.1008-8873.2016.04.028
    [3] 吕国敏, 吴进锋, 陈利雄. 我国头足类增养殖研究现状及开发前景[J]. 南方水产, 2007, 3(3): 61-66.
    [4] HEIKKINEN R K, LUOTO M, ARAÚJO M B, et al. Methods and uncertainties in bioclimatic envelope modelling under climate change[J]. Prog Phys Geogr, 2006, 30(6): 751-777. doi: 10.1177/0309133306071957
    [5] 徐晓萱, 谢玉, 刘姝含, 等. 基于GAM模型的浙江近海曼氏无针乌贼时空分布研究[J]. 浙江海洋大学学报 (自然科学版), 2022, 41(5): 400-407.
    [6] 魏裙倚, 崔国辰, 玄文丹, 等. 海表面温度及叶绿素a浓度对西北印度洋鸢乌贼时空分布的影响[J]. 中国水产科学, 2022, 29(3): 388-397.
    [7] 李杰, 张鹏, 晏磊, 等. 南海中南部海域鸢乌贼CPUE影响因素的GAM分析[J]. 中国水产科学, 2020, 27(8): 906-915.
    [8] 杨洋. 基于四种模型的肉苁蓉潜在地理分布预测及空间格局变化分析[D]. 西安: 陕西师范大学, 2017: 25-28.
    [9] 图雅. 基于物种分布模型的中国针茅属植物潜在分布区及其影响因子分析[D]. 北京: 北京林业大学, 2020: 72-73.
    [10] MEROW C, SILANDER J A. A comparison of Maxlike and Maxent for modelling species distributions[J]. Methods Ecol Evol, 2014, 5(3): 215-225. doi: 10.1111/2041-210X.12152
    [11] 陈新美, 雷渊才, 张雄清, 等. 样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J]. 林业科学, 2012, 48(1): 53-59. doi: 10.11707/j.1001-7488.20120110
    [12] TENG S, SU N, LEE M, et al. Modeling the habitat distribution of Acanthopagrus schlegelii in the coastal waters of the Eastern Taiwan Strait using MaxEnt with fishery and remote sensing data[J]. J Mar Sci Eng, 2021, 9(12): 1442. doi: 10.3390/jmse9121442
    [13] HARTE J, NEWMAN E A. Maximum information entropy: a foundation for ecological theory[J]. Trends Ecol Evol, 2014, 29(7): 384-389. doi: 10.1016/j.tree.2014.04.009
    [14] 杨继超, 董民星, 种衍飞, 等. 最大熵模型在海洋生物适生区预测中的应用[J/OL]. 应用海洋学学报. https://kns.cnki.net/kcms/detail/35.1319.P.20230302.1347.002.html.
    [15] 周海涛, 那晓东, 臧淑英, 等. 最大熵 (MaxEnt) 模型在物种栖息地研究中的应用[J]. 环境科学与管理, 2016, 41(3): 149-151. doi: 10.3969/j.issn.1673-1212.2016.03.035
    [16] 张嘉容, 杨晓明, 田思泉. 基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测[J]. 中国水产科学, 2020, 27(10): 1222-1233.
    [17] 龚彩霞, 陈新军, 高峰, 等. 水温变暖对西北太平洋柔鱼潜在栖息地分布的影响[J]. 海洋学报 (中文版), 2022, 44(7): 95-102.
    [18] PIRTLE J L, SHOTWELL S K, ZIMMERMANN M, et al. Habitat suitability models for groundfish in the Gulf of Alaska[J]. Deep-Sea Res II, 2017, 165: 303-321.
    [19] 曹子豪, 迟长凤, 刘慧慧, 等. 不同地理群体曼氏无针乌贼肌肉营养成分分析比较与评价[J]. 食品科学, 2015, 36(4): 101-105. doi: 10.7506/spkx1002-6630-201504019
    [20] 倪正雅, 徐汉祥. 浙江近海乌贼资源评估及乌贼渔业管理[J]. 海洋渔业, 1986(2): 51-54.
    [21] 李继姬, 郭宝英, 吴常文. 浙江海域曼氏无针乌贼资源演变及修复路径探讨[J]. 浙江海洋学院学报 (自然科学版), 2011, 30(5): 381-385, 396.
    [22] 覃涛, 俞存根, 陈全震, 等. 舟山渔场及邻近海域头足类 (Cephalopod) 种类组成和数量分布[J]. 海洋与湖沼, 2011, 42(1): 124-130. doi: 10.11693/hyhz201101019019
    [23] 陈伟峰, 叶深, 余玥, 等. 浙南近海头足类种类组成及生态位分析[J]. 水生生物学报, 2021, 45(2): 428-435. doi: 10.7541/2021.2018.262
    [24] PANG Y M, TIAN Y J, FU C H, et al. Variability of coastal cephalopods in overexploited China seas under climate change with implications on fisheries management[J]. Fish Res, 2018, 208: 22-33. doi: 10.1016/j.fishres.2018.07.004
    [25] 张义浩, 王志铮, 吴常文, 等. 舟山群岛定生海藻种类组成、生态分布及区系特征研究[J]. 浙江海洋学院学报 (自然科学版), 2002, 21(2): 98-105.
    [26] 刘连为, 隋宥珍, 徐开达, 等. 曼氏无针乌贼两个地理群体繁殖生物学比较研究[J]. 海洋湖沼通报, 2022, 44(4): 57-62. doi: 10.13984/j.cnki.cn37-1141.2022.04.008
    [27] WARREN D L, MATZKE N J, CARDILLO M, et al. ENMTools 1.0: an R package for comparative ecological biogeography[J]. Ecography, 2021, 44(4): 504-511. doi: 10.1111/ecog.05485
    [28] 尹飞, 王春琳, 宋微微. 曼氏无针乌贼幼体生态因子耐受性的研究[J]. 湛江海洋大学学报, 2005, 25(4): 39-43.
    [29] 黄伟卿, 陈宇光, 张艺, 等. 盐度胁迫对曼氏无针乌贼胚胎发育和生长性能的影响[J]. 渔业现代化, 2022, 49(6): 100-107. doi: 10.3969/j.issn.1007-9580.2022.06.013
    [30] 郑美丽, 肖金华, 郑微云, 等. 曼氏无针乌贼的趋光特性[J]. 厦门大学学报 (自然科学版), 1980(3): 91-99.
    [31] GUISAN A, ZIMMERMANN N E. Predictive habitat distribution models in ecology[J]. Ecol Model, 2000, 135(2): 147-186.
    [32] 谢平, 赵羽西, 桑燕芳, 等. 基于相关系数的水文周期变异分级方法及验证[J]. 水力发电学报, 2018, 37(12): 33-43. doi: 10.11660/slfdxb.20181204
    [33] COBOS M E, PETERSON A T, BARVE N, et al. kuenm: an R package for detailed development of ecological niche models using MaxEnt[J]. PeerJ, 2019, 7: e6281. doi: 10.7717/peerj.6281
    [34] SHCHEGLOVITOVA M, ANDERSON R P. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes[J]. Ecol Model, 2013, 269: 9-17. doi: 10.1016/j.ecolmodel.2013.08.011
    [35] 阮欧, 刘绥华, 陈芳, 等. 基于多源遥感的贵州草海国家级自然保护区黑颈鹤生境适宜性评价[J]. 生态学报, 2022, 42(5): 1947-1957.
    [36] MASTRANDREA M D, FIELD C B, STOCKER T F, et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties[C]. The IPCC Panel, Intergovernmental Panel on Climate Change (IPCC), CA, USA, IPCC Cross-Working Group Meeting on Consistent Treatment of Uncertainties Jasper Ridge, 2010: 2-3.
    [37] PETERSON A T, PAPE M, SOBERÓN J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling[J]. Ecol Model, 2017, 213(1): 63-72.
    [38] 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365-372. doi: 10.3321/j.issn:1005-0094.2007.04.005
    [39] 曹杰, 陈新军, 刘必林, 等. 鱿鱼类资源量变化与海洋环境关系的研究进展[J]. 上海海洋大学学报, 2010, 19(2): 232-239.
    [40] 肖戈, 徐博, 张衡, 等. 阿拉伯海外海鸢乌贼渔场时空分布与海洋环境要素的研究[J]. 南方水产科学, 2022, 18(4): 10-19. doi: 10.12131/20210217
    [41] 陈峰, 李楠, 方舟, 等. 浙江近岸海域春夏季剑尖枪乌贼栖息地分布变化规律[J]. 上海海洋大学学报, 2021, 30(5): 847-855. doi: 10.12024/jsou.20201203245
    [42] 吴天, 梁君, 周永东, 等. 中街山列岛海域曼氏无针乌贼栖息地偏向性研究[J]. 浙江海洋大学学报 (自然科学版), 2022, 41(5): 408-417.
    [43] 刘姝含, 刘连为, 徐开达, 等. 浙江中北部近海曼氏无针乌贼资源现状[J]. 浙江海洋大学学报 (自然科学版), 2022, 41(4): 286-293.
    [44] 袁健美, 张虎, 贲成恺, 等. 江苏近海曼氏无针乌贼增殖放流效果评估[J]. 水产养殖, 2023, 44(2): 12-16. doi: 10.3969/j.issn.1004-2091.2023.02.003
    [45] 张建设. 曼氏无针乌贼养殖生物学特性和血细胞免疫功能研究[D]. 厦门: 厦门大学, 2007: 155.
    [46] YIN F, SUN P, PENG S M, et al. The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures[J]. Aquaculture, 2013, 402/403: 127-132. doi: 10.1016/j.aquaculture.2013.03.018
    [47] PENG S M, YIN F, SHI Z H, et al. Optimum water temperature for the growth of juvenile common Chinese cuttlefish, Sepiella maindroni (de Rochebrune 1884)[J]. J Shellfish Res, 2011, 30(2): 205-209. doi: 10.2983/035.030.0202
    [48] 雷舒涵, 吴常文, 高天翔, 等. 金乌贼和曼氏无针乌贼胚胎发育及其盐度耐受能力的比较研究[J]. 中国水产科学, 2011, 18(2): 350-359.
    [49] HALVORSEN R, MAZZONI S, BRYN A, et al. Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt[J]. Ecography, 2015, 38(2): 172-183. doi: 10.1111/ecog.00565
    [50] 朱海洋. 舟山渔场: 从“赶海”到“养海”[N]. 农民日报, 2023-02-16(6).
    [51] 宋旻鹏, 汪金海, 郑小东. 中国经济头足类增养殖现状及展望[J]. 海洋科学, 2018, 42(3): 149-156. doi: 10.11759/hykx20180128001
    [52] 季乾昭, 王荣兴, 黄志旁, 等. 样本量与研究范围变化对MaxEnt模型准确度的影响: 以黑白仰鼻猴为例[J]. 兽类学报, 2019, 39(2): 126-133.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  46
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-05-18
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-10
  • 刊出日期:  2023-10-05

目录

    /

    返回文章
    返回