留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复方中草药对中华鳖肠道微生物菌群及非特异性免疫功能的影响

包宇航 章新宇 尹尚军 张海琪 徐洁皓

包宇航, 章新宇, 尹尚军, 张海琪, 徐洁皓. 复方中草药对中华鳖肠道微生物菌群及非特异性免疫功能的影响[J]. 南方水产科学, 2023, 19(5): 86-94. doi: 10.12131/20230069
引用本文: 包宇航, 章新宇, 尹尚军, 张海琪, 徐洁皓. 复方中草药对中华鳖肠道微生物菌群及非特异性免疫功能的影响[J]. 南方水产科学, 2023, 19(5): 86-94. doi: 10.12131/20230069
BAO Yuhang, ZHANG Xinyu, YIN Shangjun, ZHANG Haiqi, XU Jiehao. Effects of Chinese herbal compound on intestinal microbiota and non-specific immune function of Pelodiscus sinensis[J]. South China Fisheries Science, 2023, 19(5): 86-94. doi: 10.12131/20230069
Citation: BAO Yuhang, ZHANG Xinyu, YIN Shangjun, ZHANG Haiqi, XU Jiehao. Effects of Chinese herbal compound on intestinal microbiota and non-specific immune function of Pelodiscus sinensis[J]. South China Fisheries Science, 2023, 19(5): 86-94. doi: 10.12131/20230069

复方中草药对中华鳖肠道微生物菌群及非特异性免疫功能的影响

doi: 10.12131/20230069
基金项目: 浙江省“三农六方”科技协作计划 (2021SNLF026);浙江省水产新品种选育项目 (2021C02069-8-3);宁波市重点技术研发项目(2021Z009);浙江省“生物工程”一流学科 (A类) 学生创新计划项目 (CX2021017)
详细信息
    作者简介:

    包宇航 (1996—),女,硕士研究生,研究方向为中华鳖免疫防抗。E-mail: 1620916838@qq.com

    通讯作者:

    徐洁皓 (1988—),女,讲师,博士,研究方向为中华鳖免疫防抗。E-mail: xujiehao@zwu.edu.com

  • 中图分类号: S 947.1

Effects of Chinese herbal compound on intestinal microbiota and non-specific immune function of Pelodiscus sinensis

  • 摘要: 研制一种可提高中华鳖 (Pelodiscus sinensis) 免疫力的复方中草药,探究其对肠道微生物菌群的调节作用,以为中华鳖病害防治提供参考。将平均体质量为 (44.59±9.23) g的100只中华鳖分为两组,对照组投喂基础饲料,实验组投喂含2% (质量分数) 复方中草药的饲料,连续投喂42 d。结果显示,两组优势菌门相同,但其所占比例存在差异:实验组中华鳖肠道中软壁菌门、浮霉菌门和乳杆菌属 (Lactobacillus) 等有益菌群丰度分别是对照组的32、2.25和4.12倍。利用107 CFU·mL−1浓度的嗜水气单胞菌 (Aeromonas hydrophila) 攻毒,测定中华鳖血清内的溶菌酶 (LZM)、总超氧化物歧化酶 (T-SOD)、碱性磷酸酶 (AKP) 和酸性磷酸酶 (ACP) 的活性。结果显示,对照组和实验组的T-SOD、LZM、ACP及AKP活性均在第72小时达到峰值,且实验组中华鳖血清中的4种酶在正常状态下及攻毒后的活性几乎均显著高于对照组,除LZM在攻毒12 h后两组差异不显著外。研究表明,复方中草药可有效优化中华鳖肠道微生物菌群结构,具有一定的免疫增强效果,应用前景良好。
  • 图  1  Alpha 多样性指数 box 图

    注:对照组投喂基础饲料;实验组投喂添加2%的复方中草药的饲粮。后图同此。

    Figure  1.  Alpha diversity index box chart

    Note: CG. Feeding basal diet; CPG. Feeding diet with 2% of Chinese herbal compound. The same case in following figures.

    图  2  对照组和实验组肠道菌群组成丰度差异 (门水平) 

    Figure  2.  Relative abundance of intestinal microflora composition of CG and CPG at genus level

    图  3  对照组和实验组肠道菌群组成丰度差异 (属水平) 

    Figure  3.  Relative abundance of intestinal microflora composition of CG and CPG at genus level

    图  4  对照组和实验组肠道菌群 LEfSe 差异分析图

    注:无显著差异的物种统一着色为黄色,差异物种跟随组进行着色,红色节点表示在红色组别中起到重要作用的微生物类群,绿色节点表示在绿色组别中起到重要作用的微生物类群;圆圈大小与微生物相对丰度成正比例关系。

    Figure  4.  LEfSe variance analysis of intestinal microflora of CG and CPG

    Note: Species without significant differences are uniformly colored in yellow, and differential species are colored following the group; red nodes represent microbial taxa that play an important role in the red group, and green nodes represent microbial taxa that play an important role in the green group; the size of the circle is proportional to the relative abundance of microorganisms.

    图  5  对照组和实验组肠道菌群功能预测 STAMP 差异分析

    注:左图所示为不同微生物功能预测在两组样本中的丰度比例,右图为95%置信度区间内微生物功能预测丰度的差异比例;左边纵坐标轴为不同的微生物功能预测分类。

    Figure  5.  STAMP variance analysis of functional prediction of intestinal microflora of CG and CPG

    Note: The left panel shows the proportion of abundance of different microbial functional predictions in the two groups of samples, and the right panel shows the proportion of differences in the abundance of microbial functional predictions within the 95% confidence interval; the left vertical axis shows different microbial functional prediction classifications.

    图  6  复方中草药对嗜水气单胞菌刺激前后中华鳖血清中总超氧化物歧化酶、溶菌酶、酸性磷酸酶和碱性磷酸酶活性的影响

    注:误差线用标准误值 (n=6) 表示;*. P<0.05,**. P<0.01,***. P<0.001,ns表示无显著性差异。

    Figure  6.  Effect of Chinese herbal compound on T-SOD, LZM, ACP and AKP activity in serum of P. sinensis before and after A. hydrophila challenge

    Note: The error bar is expressed by the SEM value (n=6); *. P<0.05, **. P<0.01, ***. P<0.001; ns. No significant differences.

  • [1] SERRANO P H. Responsible use of antibiotics in aquaculture[M]. Rome: Information Division FAO, 2005: 3-4.
    [2] HOELZER K, WONG N, THOMAS J, et al. Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence?[J]. BMC Vet Res, 2017, 13(1): 1-38.
    [3] REVERTER M, BONTEMPS N, D LECCHINI, et al. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives[J]. Aquaculture, 2014, 433: 50-61. doi: 10.1016/j.aquaculture.2014.05.048
    [4] CUNHA J A D, HEINZMANN B M, BALDISSEROTTO B. The effects of essential oils and their major compounds on fish bacterial pathogens: a review[J]. Appl Microbiol Biot, 2018, 125(2): 56-72.
    [5] GIANNENAS I, SIDIROPOULOU E, BONOS E, et al. The history of herbs, medicinal and aromatic plants, and their extracts: past, current situation and future perspectives science direct[M]. London: Academic Press, 2020: 1-18.
    [6] KURALKAR P S, KURALKAR S V. Role of herbal products in animal production-an updated review[J]. J Ethnopharmacol, 2021, 278(1): 42-46.
    [7] AWAD E, AWAAD A. Role of medicinal plants on growth performance and immune status in fish[J]. Fish Shellfish Immunol 2017, 13(9): 1-22.
    [8] YANG Y B, AI X H, SONG Y, et al. Effect of astragalus polysaccharide on growth, immunity and disease resistance of Trionyx sinensis[J]. Chin Fish Qual Stand, 2018, 8(4): 58-65.
    [9] KHATTAB M S A, EL-ZAIAT H M, ABDELTAWAB A M, et al. Impact of lemongrass and galangal as feed additives on performance of lactating Barki goats[J]. J Dairy Sci, 2017, 12(2): 184-189.
    [10] KHOLIF A E, HASSAN A A, EL ASHRY G M, et al. Phytogenic feed additives mixture enhances the lactational performance, feed utilization and ruminal fermentation of Friesian cows[J]. Anim Biotechnol, 2021, 32(6): 708-718. doi: 10.1080/10495398.2020.1746322
    [11] ELCOSO G, ZWEIFEL B, BACH A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows[J]. Appl Anim Behav, 2019, 35(3): 304-311.
    [12] 王吉桥, 孙永新, 张剑诚. 金银花等复方草药对牙鲆生长、消化和免疫能力的影响[J]. 水产学报, 2006, 30(1): 90-96.
    [13] 曲木, 黄成, 张宝龙, 等. 复方中草药对黄颡鱼生长、肉质及血清中补体C3、补体C4 含量的影响[J]. 中国饲料, 2018, 19: 74-79.
    [14] TAKAOKA O, JI S C, ISHIMARU K, et al. Effect of rotifer enrichment with herbal extracts on growth and resistance of red sea bream, Pagrus major (Temminck et Schlegel) larvae against Vibrio anguillarum[J]. Aquac Res, 2011, 42(12): 1824-1829. doi: 10.1111/j.1365-2109.2010.02783.x
    [15] du PASQUIER L. The immune system of invertebrates and vertebrates[J]. Comp Biochem, 2001, 129(1): 1-15.
    [16] ROCH P. Defense mechanisms and disease prevention in farmed marine invertebrates[J]. Aquaculture, 1999, 172(1/2): 125-145.
    [17] ZHANG S C, WANG Z P, WANG H M. Maternal immunity in fish[J]. Dev Comp Immunol, 2013, 39(1/2): 72-78.
    [18] 王文军. 青岛文昌鱼碱性磷酸酶基因的克隆、表达与生物信息学分析[D]. 烟台: 鲁东大学, 2021: 46-48.
    [19] CHEN Q S, SU Z H, CHEN X W. Morphological studies on cells involved in mucosal immunity of the intestine in the Chinese soft-shelled turtle[J]. Acta Hydrobiologica Sinica, 2005, 29(6): 65-81.
    [20] CHEN L G, HU C Y, LAI N L S, et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish[J]. Environ Pollut Control, 2018, 240: 17-26. doi: 10.1016/j.envpol.2018.04.062
    [21] OTT S J, MUSFELDT M, WENDEROTH D F, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease[J]. Gut, 2004, 53(5): 685-693. doi: 10.1136/gut.2003.025403
    [22] GHANBARI M, KNEIFEL W, DOMIG K J. A new view of the fish gut microbiome: advances from next-generation sequencing[J]. Aquaculture, 2015, 448: 464-475. doi: 10.1016/j.aquaculture.2015.06.033
    [23] GOMEZ D, SUNYER J O, SALINAS I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens[J]. Fish Shellfish Immunol, 2013, 35(6): 1729-1739. doi: 10.1016/j.fsi.2013.09.032
    [24] JIN W Y, HAN K N, DONG S Y, et al. Modifications in gut microbiota and fermentation metabolites in the hindgut of rats after the consumption of galactooligosaccharide glycated with a fish peptide[J]. Food Funct, 2018, 9(5): 2853-2864. doi: 10.1039/C7FO02002C
    [25] GRAÇA A P, CALISTO R, LAGE O M. Planctomycetes as novel source of bioactive molecules[J]. Front Microbiol, 2016, 7: 1241.
    [26] FOYSAL M J, FOTEDAR R, SIDDIK M A B, et al. Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii)[J]. Sci Rep, 2020, 10(1): 59-72. doi: 10.1038/s41598-019-56749-5
    [27] LARSEN A. Studies on the microbiota of fishes and the factors influencing their composition[D]. Auburn: Auburn University, 2014: 67-68.
    [28] NELSON W C, STEGEN J C. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle[J]. Front Microbiol, 2015, 6: 713.
    [29] NARUSHIMA S, SUGIURA Y, OSHIMA K, et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia[J]. Gut Microbes, 2014, 5(3): 333-339. doi: 10.4161/gmic.28572
    [30] MARTÍNEZ CRUZ P, IBÁÑEZ A L, MONROY H O A, et al. Use of probiotics in aquaculture[J]. Int Sch Res Notices, 2012, 1: 34-52.
    [31] GATESOUPE F J. Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments[J]. Adv Microb Physiol, 2008, 14(1/2/3): 107-114.
    [32] LARA F M, OLVERA N M A, GUZMÁN M B E, et al. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2003, 216(1/2/3/4): 193-201.
    [33] IBRAHIM A, RAMATU A S, ADEWALE Y A. Effect of Lactobacillus acidophilus as a dietary supplement on nonspecific immune response and disease resistance in juvenile common carp, Cyprinos carpio[J]. J Northeast Agric Univ (English Edition), 2018, 25(2): 33-42.
    [34] WANG Y B, GU Q. Effect of probiotics on white shrimp (Penaeus vannamei) growth performance and immune response[J]. Mar Biol Res, 2010, 6(3): 327-332. doi: 10.1080/17451000903300893
    [35] TORRECILLAS S, TEROVA G, MAKOL A, et al. Dietary phytogenics and galactomannan oligosaccharides in low fish meal and fish oil-based diets for European sea bass (Dicentrarchus labrax) juveniles: effects on gut health and implications on in vivo gut bacterial translocation[J]. PLoS One, 2019, 14(9): 20-22.
    [36] COTTER P D, ROSS R P, HILL C. Bacteriocins: a viable alternative to antibiotics?[J]. Nat Rev Microbiol, 2013, 11(2): 95-105. doi: 10.1038/nrmicro2937
    [37] 刘红柏, 张颖, 杨雨辉, 等. 5种中草药作为饲料添加剂对鲤肠内细菌及生长的影响[J]. 大连水产学院学报, 2004, 19(3): 16-17.
    [38] PAWLIKOWSKA-WARYCH M, DEPTUŁA W. Characteristics of chlamydia-like organisms pathogenic to fish[J]. J Appl Genet, 2016, 57(1): 135-141. doi: 10.1007/s13353-015-0303-8
    [39] LEE W J, HASE K. Gut microbiota-generated metabolites in animal health and disease[J]. Nat Chem Biol, 2014, 10(6): 416-424. doi: 10.1038/nchembio.1535
    [40] CURTIS H, BLASER M J, DIRK G, et al. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214. doi: 10.1038/nature11234
    [41] YE Q, FENG Y Y, WANG Z L, et al. Effects of dietary Gelsemium elegans alkaloids on intestinal morphology, antioxidant status, immune responses and microbiota of Megalobrama amblycephala[J]. Fish Shellfish Immunol, 2019, 94: 464-478. doi: 10.1016/j.fsi.2019.09.048
    [42] 丁鉴锋, 包鹏云, 刘学森. 复方中草药添加剂对仿刺参 (Stichopus japonicus) 幼参免疫机能的影响[J]. 饲料工业, 2011, 32(18): 14-17.
    [43] YIN X L, LI Z J, YANG K, et al. Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon[J]. Fish Shellfish Immunol, 2014, 40(1): 190-196. doi: 10.1016/j.fsi.2014.07.001
    [44] TAEE H M, HAJIMORADLOO A, HOSEINIFAR S H, et al. Dietary Myrtle (Myrtus communis L. ) improved non-specific immuneparameters and bactericidal activity of skin mucus in rainbow trout (Oncorhynchus mykiss) fingerlings[J]. Fish Shellfish Immunol, 2017, 64: 320-324. doi: 10.1016/j.fsi.2017.03.034
    [45] SHALUEI F, NEMATOLLAHI A, NADERI F H R, et al. Effect of ethanolic extract of Zingiber officinale on growth performance and mucosal immune responses in rainbow trout (Oncorhynchus mykiss)[J]. Aquac Nutr, 2017, 23(4): 814-821. doi: 10.1111/anu.12448
    [46] YAHFOUFI N, ALSADI N, JAMBI M, et al. The immunomodulatory and anti-inflammatory role of polyphenols[J]. Nutrients, 2018, 10(11): 11-34.
    [47] QUINTANS J S S, SHANMUGAM S, HEIMFARTH L, et al. Monoterpenes modulating cytokines: a review[J]. Food Chem Toxicol, 2019, 123: 233-257. doi: 10.1016/j.fct.2018.10.058
    [48] JIANG M, LI Z N, ZHU G X. Immunological regulatory effect of flavonoid baicalin on innate immune toll-like receptors[J]. Pharmacol Res, 2020, 158: 104-155.
    [49] CHEN F, HUANG G L. Preparation and immunological activity of polysaccharides and their derivatives[J]. Int J Biol Macromol, 2018, 112: 211-216. doi: 10.1016/j.ijbiomac.2018.01.169
  • 加载中
图(6)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  24
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-05-15
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-09
  • 刊出日期:  2023-10-05

目录

    /

    返回文章
    返回