Synergistic effects of pH and phenanthrene on toxicity of juvenile Chinese mitten crab (Eriocheir sinensis)
-
摘要: 为探究酸化以及环境污染物菲 (Phenanthrene, PHE) 协同效应对中华绒螯蟹 (Eriocheir sinensis) 的影响,开展了不同pH (5.5、6.5、7.8) 和PHE (0、50 µg·L−1) 对中华绒螯蟹 [(15.0±2.3) g] 的联合暴露实验 (为期14 d)。结果发现:1) 中华绒螯蟹在pH 5.5×PHE 50的协同处理下,肝胰腺和鳃组织出现严重病理损伤,肝胰腺小管形状改变,肝管细胞萎缩出现大量空泡,鳃轴肿大,鳃丝角质层表皮破损,局部基膜破裂;而pH 6.5×PHE 50对中华绒螯蟹肝胰腺和鳃组织的损伤并不显著。2) PHE处理引起中华绒螯蟹幼蟹肝胰腺糖原 (Gly) 以及低密度脂蛋白胆固醇 (LDL-C) 浓度显著降低,表明PHE会导致中华绒螯蟹能量代谢水平下降;相较于对照组,pH 5.5×PHE 50对甘油三酯 (TG)、Gly、高密度脂蛋白胆固醇 (HDL-C) 和LDL-C浓度均有抑制效果,而pH 6.5×PHE 50使得中华绒螯蟹TG浓度较对照组显著升高。3) 实时荧光定量PCR结果表明,多环芳烃受体 (ahr)、芳香烃受体核转位因子 (arnt) 和细胞色素p450 1A1 (cyp1a1) 基因的表达量均随pH的降低而升高,并在pH 5.5时达到最高。以上结果表明,酸化和PHE的联合作用改变了中华绒螯蟹的能量代谢,其中pH 5.5时显著加剧了PHE对其肝胰腺组织结构的毒性作用以及对能量代谢的影响。Abstract: In order to explore the synergistic effects of acidification and environmental pollutant phenanthrene (PHE) on Chinese mitten crabs (Eriocheir sinensis), we carried out a 14-day joint exposure experiment of E. sinensis [(15.0±2.3) g] to different pH (5.5, 6.5, 7.8) and PHE (0, 50 µg·L−1). The results show that: 1) Under the synergistic treatment of pH 5.5×PHE 50 on E. sinensis, the hepatopancreas and gill tissues were severely damaged; the shape of the hepatopancreatic tubules changed; a large number of vacuoles appeared in the atrophy of the hepatic duct cells. The gill axis was enlarged; the cuticle of the gill filament was damaged; the local basement membrane was ruptured. However, pH 6.5×PHE 50 did not significantly damage the hepatopancreas and gill tissues of E. sinensis. 2) PHE treatment significantly reduced the contents of Gly and LDL-C in hepatopancreas of juvenile E. sinensis, indicating that PHE could decrease the energy metabolism level of E. sinensis. Compared with the control group, pH 5.5×PHE 50 inhibited the contents of TG, Gly, HDL-C and LDL-C, while pH 6.5×PHE 50 significantly increased TG content. 3) Real-time fluorescent quantitative PCR experiment shows that AHR, ARNT and CYP1A1 increased significantly with the decrease of pH, and reached the highest values at pH 5.5. The results reveal that the combining effect of acidification and PHE changes the energy metabolism of E. sinensis, and pH 5.5 significantly aggravates the toxic effect of PHE on the hepatopancreas tissue structure of E. sinensis, as well as its energy metabolism.
-
Key words:
- Eriocheir sinensis /
- Acidification /
- Phenanthrene /
- Energy metabolism
-
图 1 中华绒螯蟹肝胰腺和鳃组织暴露在 PHE (50 µg·L−1) 和 pH (7.8、6.5和5.5) 中14 d 后的病理变化
注:a. pH 7.8×PHE 50组肝胰腺;b. pH 6.5×PHE 50组肝胰腺;c. pH 5.5×PHE 50组肝胰腺;d. pH 7.8×PHE 50组鳃;e. pH 6.5×PHE 50组鳃;f. pH 5.5×PHE 50组鳃。
Figure 1. Pathological changes of hepatopancreas and gill tissues of E. sinensis after exposure to PHE (50 µg·L−1) and pH (7.8, 6.5, and 5.5) for 14 d
Note: a. Hepatopancreas in pH 7.8×PHE 50 group; b. Hepatopancreas in pH 6.5×PHE 50 group; c. Hepatopancreas in pH 5.4×PHE 50 group; d. Gill in pH 7.8×PHE 50 group; e. Gill in pH 6.5×PHE 50 group; f. Gill in pH 5.5×PHE 50 group.
图 2 不同 pH 条件下 PHE 浓度对中华绒螯蟹能量代谢指标的影响
注:数值表示为“平均值±标准误”(n=3);方柱上方不同大写字母表示在PHE 0 µg·L−1下差异显著 (P<0.05);不同小写字母表示在PHE 50 µg·L−1下差异显著 (P<0.05);*表示相同pH下组间差异显著 (P<0.05)。图3同此。
Figure 2. Effect of PHE concentration on energy metabolism indexes of E. sinensis under different acidification conditions
Note: Values are represented as Mean±SE (n=3); different uppercase letters above the columns indicate significant differences at PHE 0 µg·L−1 (P<0.05); different lowercase letters indicate significant differences at PHE 50 µg·L−1 (P<0.05); * indicates significant differences between the two groups at the same pH values (P<0.05). The same case in Fig. 3.
表 1 引物名称及序列
Table 1. Primer names and sequnences
基因
Gene对应蛋白
Corresponding protein引物序列 (5'—3')
Primer sequence (5'−3')ahr 多环芳烃受体
Polycyclic aromatic hydrocarbon receptorF: GGCGGTAACACCAGTGAAGAGTC
R: TGGAGATTGTAGGAGGCGAGAAGTarnt 芳香烃受体核转位因子 (ARNT) 重组蛋白
Aryl hydrocarbon receptor nuclear translocation factor (ARNT) recombinant proteinF: CCAACCTTCATGCGGCAGATGAAC
R: ACACAGGAGCCAGCCAACCAAGcyp1a1 细胞色素
Cytochrome P1A1F: ATTTCGTGCTGGTTTGGC
R: GGAGTTGCTGCGTATTGGT表 2 pH 和 PHE 对中华绒螯蟹肝胰腺甘油三酯、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇和糖原含量影响的双因素方差分析
Table 2. Two-way analysis of variance for influence of pH and PHE on contents of TG, HDL-C, LDL-C and Gly in E. sinensis hepatopancreas
能量代谢指标
Energy metabolism index处理组别
Group自由度
DF均方差
MSF P 甘油三酯 TG PHE 1 0.009 6.591 <0.001 pH 2 0.025 17.585 <0.001 PHE×pH 2 0.018 12.798 <0.001 高密度脂蛋白胆固醇 HDL-C PHE 1 0.000 2 0.301 0.593 pH 2 0.002 201.824 <0.001 PHE×pH 2 0.000 1 18.863 <0.001 低密度脂蛋白胆固醇 LDL-C PHE 1 0.000 1 9.378 0.010 pH 2 0.008 145.710 <0.001 PHE×pH 2 0.001 10.200 0.003 糖原 Gly PHE 1 0.240 39.171 0.020 pH 2 0.677 110.327 <0.001 PHE×pH 2 0.043 6.952 0.010 表 3 pH 和 PHE 对中华绒螯蟹 ahr、 arnt、 cyp1a1 基因表达量影响的双因素方差分析
Table 3. Two-way analysis of variance for effects of pH and PHE on ahr, arnt and cyp1a1 gene expression of E. sinensis
基因
Gene处理组别
Group自由度
DF均方差
MSF P ahr PHE 1 7.889 204.860 <0.001 pH 2 7.760 208.258 <0.001 PHE×pH 2 5.111 134.930 <0.001 arnt PHE 1 8.133 314.861 <0.001 pH 2 8.276 320.375 <0.001 PHE×pH 2 5.697 220.565 <0.001 cyp1a1 PHE 1 51.122 1 643.494 <0.001 pH 2 28.965 931.189 <0.001 PHE×pH 2 4.721 151.787 <0.001 -
[1] 么宗利, 王慧, 周凯, 等. 碳酸盐碱度和pH对凡纳滨对虾仔虾存活率的影响[J]. 生态学杂志, 2010(5): 945-950. [2] HU M H, LI L S, SUI Y M, et al. Effect of pH and temperature on antioxidant responses of the thick shell mussel Mytilus coruscus[J]. Fish Shellfish Immunol, 2015, 46: 573-583. doi: 10.1016/j.fsi.2015.07.025 [3] WANG J L, LU R H, SUN J J, et al. Differential expression of lipid metabolism-related genes and miRNAs in Ctenopharyngodon idella liver in relation to fatty liver induced by high non-protein energy diets[J]. Aquac Res, 2017, 48: 4070-4085. doi: 10.1111/are.13228 [4] WU Y, ZHANG J, ZHU Z J. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China[J]. Mar Pollut Bull, 2003, 46(5): 619-625. doi: 10.1016/S0025-326X(03)00035-3 [5] LIU G Q, ZHANG G, JIN Z, et al. Sedimentary record of hydrophobic organic compounds in relation to regional economic development: a study of Taihu Lake, East China[J]. Environ Pollut, 2009, 157(11): 2994-3000. doi: 10.1016/j.envpol.2009.05.056 [6] ZHANG G, PARKER A, HOUSE A, et al. Sedimentary records of DDT and HCH in the Pearl River Delta, South China[J]. Environ Sci Technol, 2002, 36(17): 3671-3677. doi: 10.1021/es0102888 [7] ZHANG Z L, HONG H S, ZHOU J L, et al. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China[J]. Sci Total Environ, 2004, 323(1/2/3): 71-86. [8] HARITASH A K, KAUSHIK C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. J Hazard Mater, 2009, 169(1/2/3): 1-15. [9] 吕晏锋, 赵晓祥, 王俊锋. 菲胁迫对鲤鱼的急性毒性和抗氧化酶响应[J]. 东华大学学报 (自然科学版), 2018, 44(2): 309-316. [10] CORREIA A D, GONFALVES R, SCHOLZE M, et al. Biochemical and behavioral responses in gilthead seabream (Sparus aurata) to phenanthrene[J]. J Exp Mar Biol Ecol, 2007, 347(1): 109-122. [11] ENDLER A, CHEN L, SHIBASAKI F. Coactivator recruitment of AhR/ARNT1[J]. Int J Mol Sci, 2014, 15(6): 11100-11110. doi: 10.3390/ijms150611100 [12] SOGAWA K, FUJII-KURIYAMA Y. Ah receptor, a novel ligand-activated transcription factor[J]. J Biochem, 1997, 122(6): 1075-1079. doi: 10.1093/oxfordjournals.jbchem.a021864 [13] FUJII-KURIYAMA Y, MIMURA J. Molecular mechanisms of AHR functions in the regulation of cytochrome P450 genes[J]. Biochem Bioph Res Co, 2005, 338(1): 311-317. doi: 10.1016/j.bbrc.2005.08.162 [14] 常国亮, 成永旭, 于智勇, 等. 脂类营养对中华绒螯蟹幼蟹肝胰腺超微结构的影响[J]. 河南师范大学学报 (自然科学版), 2011, 39(4): 108-111. [15] ZHAO X J, YANG Z G, CHENG Y X. Effects of cadmium alone and in combination with pH on bioaccumulation, tissue structure, and enzyme activity of the Chinese mitten crab, Eriocheir sinensis[J]. Comp Biochem Phys C, 2021, 245(3): 109025. [16] PAN Z H, SONG X H, HU X L, et al. Pathological changes and risk factors of hepatopancreas necrosis disease of mitten crab, Eriocheir sinensis[J]. Fish Aquac J, 2017, 8(3): 220-225. [17] ROSZER T. The invertebrate midintestinal gland ("hepatopancreas") is an evolution-ary forerunner in the integration of immunity and metabolism[J]. Cell Tissue Res, 2014, 358: 685-695. [18] JAWARD F M, ALEGRIA H A, GALINDO REYES J G, et al. Levels of PAHs in the waters, sediments, and shrimps of Estero de Urias, an estuary in mexico, and their toxicological effects[J]. Sci World J, 2012: 687034. DOI: 10.1100/2012/687034. [19] FILLMANN G, WATSON G M, HOWSAM M, et al. Urinary PAH metabolites as biomarkers of exposure in aquatic environments[J]. Environ Sci Technol, 2004, 38(9): 2649. doi: 10.1021/es0350839 [20] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262 [21] BAINY A, SAITO E, CARVALHO P, et al. Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site[J]. Aquat Toxicol, 1996, 34(2): 151-162. doi: 10.1016/0166-445X(95)00036-4 [22] 陶易凡, 强俊, 王辉, 等. 低pH胁迫对克氏原螯虾鳃和肝胰腺酶活力及组织结构的影响[J]. 中国水产科学, 2016, 23(6): 1279-1289. [23] 于智勇, 吴旭干, 常国亮, 等. 中华绒螯蟹第二次卵巢发育期间卵巢和肝胰腺中主要生化成分的变化[J]. 水生生物学报, 2007, 31(6): 799-806. [24] WANG X D, HUANG Z P, WANG C L, et al. A comparative study on growth and metabolism of Eriocheir sinensis juveniles under chronically low and high pH stress[J]. Front Physiol, 2020, 11: 00885. doi: 10.3389/fphys.2020.00885 [25] CHEN L Q, LI E, CHEN L Q. A review of carbohydrate nutrition and metabolism in crustaceans[J]. N Am J Aquac ulture, 2016, 78(2): 178-187. doi: 10.1080/15222055.2016.1141129 [26] KWONG R, KUMAI Y, PERRY S F. The physiology of fifish at low pH: the zebra fish as a model system[J]. J Exp Biol, 2014, 217: 651-662. doi: 10.1242/jeb.091603 [27] ESTHER L, BEGONA F D, RAUL G, et al. Stress-induced effects on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): a self-feeding approach[J]. J Comp Physiol B, 2011, 181(8): 1035-1044. doi: 10.1007/s00360-011-0585-z [28] 付慧, 汪秋宽, 何云海, 等. 多肋藻渣膳食纤维对小鼠降血脂作用的研究[J]. 大连海洋大学学报, 2012, 27(3): 200-204. doi: 10.16535/j.cnki.dlhyxb.2012.03.007 [29] 吴清和, 邢燕红, 荣向路, 等. 褐藻糖胶 (FPS)对高脂血症大鼠肝脏LDL-RmRNA表达的影响[J]. 中药材, 2007, 30(8): 968-970. [30] LI M X, WANG X D, QI C L, et al. Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress[J]. Aquaculture, 2018, 495: 187-195. doi: 10.1016/j.aquaculture.2018.05.031 [31] YU N, DING Q Q, LI E C, et al. Growth, energy metabolism and transcriptomic responses in Chinese mitten crab (Eriocheir sinensis) to benzo[α]pyrene (BaP) toxicity[J]. Aquat Toxicol, 2018, 203: 150-158. doi: 10.1016/j.aquatox.2018.08.014 [32] KHAN F U, CHEN H, GU H X, et al. Antioxidant responses of the mussel Mytilus coruscus co-exposed to ocean acidification, hypoxia and warming[J]. Mar Pollut Bull, 2020, 162(1): 111869. [33] MILLER G J, MILLER N E. Plasma high density lipoprotein concentration and development of ischaemic heart disease[J]. Lancet, 1975, 305(7897): 16-19. doi: 10.1016/S0140-6736(75)92376-4 [34] YANG Q, YANG R, LI M, et al. Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Fish Shellfish Immunol, 2014, 41(2): 264-270. doi: 10.1016/j.fsi.2014.09.003 [35] 刘小红. 水体镉暴露对稀有鲫肝脏毒性及脂代谢影响的初步研究[D]. 重庆: 西南大学, 2017: 104-108. [36] XU Y H, HOGSTRANG C, XU Y C, et al. Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella[J]. Environ Pollut, 1987, 283: 117079. [37] HOLEN E, OLSVIK P A. Aryl hydrocarbon receptor protein and CYP1A1 gene induction by LPS and phenanthrene in Atlantic cod (Gadus morhua) head kidney cells[J]. Fish Shellfish Immunol, 2014, 40(2): 384-391. doi: 10.1016/j.fsi.2014.07.022 [38] GUO R M, PAN L Q, LIN P F. The detoxification responses, damage effects and bioaccumulation in the scallop Chlamys farreri exposed to single and mixtures of benzo[a]pyrene and chrysene[J]. Comp Biochem Phys C, 2017, 191: 36-51. [39] LIU N, PAN L Q, MIAO J J, et al. Molecular cloning and sequence analysis and the response of a aryl hydrocarbon receptor homologue gene in the clam Ruditapes philippinarum exposed to benzo(a)pyrene[J]. Comp Biochem Physiol C, 2010, 152(3): 279-287. [40] TIAN S M, PAN L Q, SUN X H. An investigation of endocrine disrupting effects and toxic mechanisms modulated by benzo[a]pyrene in female scallop Chlamys farreri[J]. Aquat Toxicol, 2013, 144/145: 162-171. doi: 10.1016/j.aquatox.2013.09.031 [41] LIMA D, MATTOS J J, PIAZZA R S, et al. Stress responses in Crassostrea gasar exposed to combined effects of acute pH changes and phenanthrene[J]. Sci Total Environ, 2019, 678: 585-593. doi: 10.1016/j.scitotenv.2019.04.450 [42] QUABIUS E S, NOLAN D T, BONGA S. Influence of dietary exposure to PCB 126 and nutritional state on stress response in tilapia (Oreochromis mossambicus) and rainbow trout (Oncorhynchus mykiss)[J]. Environ Toxicol Chem, 2000, 19(12): 2892-2899. doi: 10.1002/etc.5620191207 [43] WANG B L, ZHANG C W, WANG L, et al. Lipidomics reveal aryl hydrocarbon receptor (Ahr)-regulated lipid metabolic pathway in alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis[J]. Xenobiotica, 2019, 49(5): 591-601. doi: 10.1080/00498254.2018.1467065 [44] 王芸, 李健, 李吉涛, 等. pH胁迫对中国明对虾抗氧化系统酶活力及基因表达的影响[J]. 中国水产科学, 2011, 18(3): 556-564. -