Cloning, expression and identification of a gene CgFUT5 associated with Lewis antigen synthesis of Oyster norovirus receptors
-
摘要: Lewis抗原被认为是诺如病毒特异性结合受体,作为诺如病毒传播载体,牡蛎中也存在着类Lewis抗原,但牡蛎合成这种碳水化合物的途径尚未阐明。为解析牡蛎中诺如病毒受体类Lewis抗原的合成路径,利用cDNA末端快速扩增 (Rapid amplification of cDNA ends, RACE) 技术克隆得到太平洋牡蛎 (Crassostrea gigas) 的CgFUT5基因全序列并进行生物信息学分析,通过实时荧光定量聚合酶链式反应 (RT-qPCR) 分析其在5种组织中的表达情况。构建原核表达质粒转化大肠杆菌 (Escherichia coli) 实现异源表达,并通过免疫印迹法 (Western blot) 鉴定免疫原性。克隆得到了具有1 173 bp开放阅读区的CgFUT5基因cDNA序列,系统发育树显示CgFUT5基因与多个物种具有合成Lewis抗原功能的岩藻糖基转移酶基因遗传学关系较近。重组CgFUT5蛋白可在大肠杆菌中过量表达,且表达的重组CgFUT5蛋白与抗人FUT5抗体及抗6×His标签抗体均能特异性结合。研究发现CgFUT5基因在牡蛎鳃组织中大量表达,CgFUT5蛋白与人FUT5蛋白具有相似的免疫原性,推测牡蛎中存在着类Lewis抗原的合成通路,并且调控牡蛎类Lewis抗原合成的基因还具有组织表达差异性。Abstract: Lewis antigen is regarded as a specific binding receptor for norovirus, and Lewis-like antigen is also present in oysters as a vehicle for norovirus transmission, but the pathway for synthesis of this carbohydrate in oysters has not been elucidated. To clarify the pathway of norovirus receptor-like Lewis antigen synthesis in oysters, we cloned the CgFUT5 gene from the Pacific oyster (Crassostrea gigas) genome and analyzed it for expression in five tissues. The full sequence of CgFUT5 gene was obtained by rapid amplification of cDNA ends (RACE) and bioinformatically analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). A prokaryotic expression plasmid was constructed to transform Escherichia coli for heterologous expression, and immunogenicity was identified by immunoblotting (Western blot). The cDNA sequence of CgFUT5 gene with 1 173 bp open reading region was obtained by cloning, and phylogenetic tree shows that CgFUT5 gene was genetically related to the rockweed glycosyltransferase gene that has the function of synthesizing Lewis antigen in several species. The recombinant CgFUT5 protein could be overexpressed in E. coli, and the expressed recombinant CgFUT5 protein specifically bound to both anti-human FUT5 antibody and anti-6×His tag antibody. To sum up, CgFUT5 gene was successfully cloned and found to be abundantly expressed in oyster gill tissue, and CgFUT5 protein had similar immunogenicity to human FUT5 protein. It was hypothesized that a Lewis-like antigen synthesis pathway exists in oysters, and the genes regulating Lewis-like antigen synthesis in oysters also have differential tissue expression.
-
Key words:
- Crassostrea gigas /
- CgFUT5 gene /
- Clone /
- Tissue expression /
- Prokaryocyte expression
-
表 1 实验中所用引物
Table 1. Primers used in this experiment
引物
Primer序列 (5'—3')
Sequence (5'−3')用途
FunctionFT5-1 CCAGAGCCAAAAACCTCACTC 中间片段克隆 RT5-1 TCCCAGCGAAATCTACTTCC RRT5 GATTACGCCAAGCTTGTAATGACTGGACACGACACTGTTCTTG RACE FRT5 GATTACGCCAAGCTTACGCATCTCCTGAAGAATTGGCTAAGG Q-FT5-A TCTGTATTCTGTAAGGCCGGAGTGG 荧光定量组织表达分析 Q-RT5-A AGTTTCGGGACAATGGGATTTCTCG F-actin CTGTGCTACGTTGCCCTGGACTT R-actin TGGGCACCTGAATCGCTCGTT -
[1] FISCHER W C, PERIN J, ARYEE M J, et al. Diarrhea incidence in low- and middle-income countries in 1990 and 2010: a systematic review[J]. BMC Public Health, 2012, 12: 220. doi: 10.1186/1471-2458-12-220 [2] NORDGREN J, SVENSSON L. Genetic susceptibility to human norovirus infection: an update[J]. Viruses, 2019, 11(3): 226. doi: 10.3390/v11030226 [3] TEUNIS P F M, MOE C L, LIU P, et al. Norwalk virus: how infectious is it?[J]. J Med Virol, 2008, 80(8): 1468-1476. doi: 10.1002/jmv.21237 [4] TAN M, JIANG X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle[J]. Trends Microbiol, 2005, 13(6): 285-293. doi: 10.1016/j.tim.2005.04.004 [5] ATMAR R L, RAMANI S, ESTES M K. Human noroviruses: recent advances in a 50-year history[J]. Curr Opin Infect Dis, 2018, 31(5): 422-432. doi: 10.1097/QCO.0000000000000476 [6] HUNT K, DORÉ B, KEAVENEY S, et al. A quantitative exposure assessment model for norovirus in oysters harvested from a classified production area[J]. Microb Risk Anal, 2023, 23: 100247. doi: 10.1016/j.mran.2023.100247 [7] RAZAFIMAHEFA R M, LUDWIG-BEGALL L F, THIRY E. Cockles and mussels, alive, alive, oh: the role of bivalve molluscs as transmission vehicles for human norovirus infections[J]. Transbound Emerg Dis, 2020, 67(S2): 9-25. doi: 10.1111/tbed.13165 [8] CAMPOS C J, LEES D N. Environmental transmission of human noroviruses in shellfish waters[J]. Appl Environ Microbiol, 2014, 80(12): 3552-3561. doi: 10.1128/AEM.04188-13 [9] le GUYADER F, LOISY F, ATMAR R L, et al. Norwalk virus-specific binding to oyster digestive tissues[J]. Emerg Infect Dis, 2006, 12(6): 931-936. doi: 10.3201/eid1206.051519 [10] HUANG P W, FARKAS T, MARIONNEAU S, et al. Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns[J]. J Infect Dis, 2003, 188(1): 19-31. doi: 10.1086/375742 [11] TIAN P, BATES A H, JENSEN H M, et al. Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells[J]. Lett Appl Microbiol, 2006, 43(6): 645-651. doi: 10.1111/j.1472-765X.2006.02010.x [12] SAIKIA K, SAHARIA N, SINGH C S, et al. Association of histo-blood group antigens and predisposition to gastrointestinal diseases[J]. J Med Virol, 2022, 94(11): 5149-5162. doi: 10.1002/jmv.28028 [13] SZLASA W, WILK K, KNECHT-GURWIN K, et al. Prognostic and therapeutic role of CD15 and CD15s in cancer[J]. Cancers, 2022, 14(9): 2203. doi: 10.3390/cancers14092203 [14] AZIZ F, KHAN I, SHUKLA S, et al. Partners in crime: the Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer[J]. Pharmacol Ther, 2022, 232: 107994. doi: 10.1016/j.pharmthera.2021.107994 [15] PEÑA-GIL N, SANTISO-BELLÓN C, GOZALBO-ROVIRA R, et al. The role of host glycobiology and gut microbiota in rotavirus and norovirus infection, an update[J]. Int J Mol Sci, 2021, 22(24): 13473. doi: 10.3390/ijms222413473 [16] HARRINGTON P R, VINJE J, MOE C L, et al. Norovirus capture with histo-blood group antigens reveals novel virus-ligand interactions[J]. J Virol, 2004, 78(6): 3035-3045. doi: 10.1128/JVI.78.6.3035-3045.2004 [17] ORIOL R. ABO, Hh, Lewis, and secretion[M]//CARTRON J, ROUGER P. Molecular basis of human blood group antigens. Boston, MA: Springer US, 1995: 37-73. [18] COSTACHE M, CAILLEAU A, FERNANDEZ-MATEOS P, et al. Advances in molecular genetics of α-2- and α-3/4-fucosyltransferases[J]. Transfus Clin Biol, 1997, 4(4): 367-382. doi: 10.1016/S1246-7820(97)80042-0 [19] KEELEY T S, YANG S Y, LAU E. The diverse contributions of fucose linkages in cancer[J]. Cancers, 2019, 11(9): 1241. doi: 10.3390/cancers11091241 [20] 孙玥, 王晓非. 岩藻糖基转移酶的研究进展[J]. 医学综述, 2019, 25(1): 28-33. [21] HOLGERSSON J, LÖFLING J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity[J]. Glycobiology, 2006, 16(7): 584-593. doi: 10.1093/glycob/cwj090 [22] DERYA S M, SPIEGEL H, HANISCH F G, et al. Biotechnologically produced fucosylated oligosaccharides inhibit the binding of human noroviruses to their natural receptors[J]. J Biotechnol, 2020, 318: 31-38. doi: 10.1016/j.jbiotec.2020.05.001 [23] ESHAGHI G M, TAN M T H, LI D. Influence of fucosidase-producing bifidobacteria on the HBGA antigenicity of oyster digestive tissue and the associated norovirus binding[J]. Int J Food Microbiol, 2021, 340: 109058. doi: 10.1016/j.ijfoodmicro.2021.109058 [24] MA L P, SU L J, LIU H, et al. Norovirus contamination and the glycosphingolipid biosynthesis pathway in Pacific oyster: a transcriptomics study[J]. Fish Shellfish Immunol, 2017, 66: 26-34. doi: 10.1016/j.fsi.2017.04.023 [25] 姜薇. 太平洋牡蛎类FUT2基因的克隆与时空表达[D]. 青岛: 中国海洋大学, 2014: 39-57. [26] 李春勇. 敌百虫诱导近江牡蛎 (Crassostrea hongkongensis) HSC70基因表达的定量研究[D]. 广州: 暨南大学, 2007: 23-38. [27] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262 [28] 教杨, 姚琳, 曲梦, 等. 牡蛎诺如病毒受体合成基因类FUT10的克隆与组织表达[J]. 食品安全质量检测学报, 2022, 13(1): 120-127. doi: 10.3969/j.issn.2095-0381.2022.1.spaqzljcjs202201016 [29] TU Z, LIN Y N, LIN C H. Development of fucosyltransferase and fucosidase inhibitors[J]. Chem Soc Rev, 2013, 42(10): 4459-4475. doi: 10.1039/c3cs60056d [30] de VRIES T, KNEGTEL R M, HOLMES E H, et al. Fucosyltransferases: structure/function studies[J]. Glycobiology, 2001, 11(10): 119R-128R. doi: 10.1093/glycob/11.10.119R [31] NGUYEN K, van DIE I, GRUNDAHL K M, et al. Molecular cloning and characterization of the Caenorhabditis elegans α1, 3-fucosyltransferase family[J]. Glycobiology, 2007, 17(6): 586-599. doi: 10.1093/glycob/cwm023 [32] le GUYADER F S, ATMAR R L, Le PENDU J. Transmission of viruses through shellfish: when specific ligands come into play[J]. Curr Opin Virol, 2012, 2(1): 103-110. doi: 10.1016/j.coviro.2011.10.029 [33] 吴佳颖. 2011年-2021年诺如病毒在中国5岁以下急性胃肠炎儿童中的流行: 系统评价和荟萃分析[D]. 重庆: 重庆医科大学, 2022: 1-18. [34] 郎中凯, 甘雨露, 颜朝阳, 等. 2015—2021年重庆市万州区诺如病毒感染疫情流行特征分析[J]. 中国初级卫生保健, 2022, 36(11): 91-94. [35] 魏开心, 石安琪, 曹慜, 等. 宁夏地区2019-2020年诺如病毒所致感染性腹泻流行特征和病原学分析[J]. 病毒学报, 2023, 39(1): 96-104. [36] 赵金华, 龙江, 李得恩, 等. 青海省西宁市某幼儿园一起诺如病毒暴发疫情调查及分子流行特征分析[J]. 医学动物防制, 2023, 39(2): 116-119. [37] PAULSON J C, COLLEY K J. Glycosyltransferases: Structure, localization, and control of cell type-specific glycosylation[J]. J Biol Chem, 1989, 264(30): 17615-17618. doi: 10.1016/S0021-9258(19)84610-0 [38] de VRIES T, STORM J, ROTTEVEEL F, et al. Production of soluble human alpha3-fucosyltransferase (FucT VII) by membrane targeting and in vivo proteolysis[J]. Glycobiology, 2001, 11(9): 711-717. doi: 10.1093/glycob/11.9.711 [39] EL-BATTARI A, PROROK M, ANGATA K, et al. Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation[J]. Glycobiology, 2003, 13(12): 941-953. doi: 10.1093/glycob/cwg117 [40] CICERON F, ROCHA J, KOUSAR S, et al. Expression, purification and biochemical characterization of AtFUT1, a xyloglucan-specific fucosyltransferase from Arabidopsis thaliana[J]. Biochimie, 2016, 128/129: 183-192. doi: 10.1016/j.biochi.2016.08.012 [41] PETSCHACHER B, NIDETZKY B. Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems[J]. J Biotechnol, 2016, 235: 61-83. doi: 10.1016/j.jbiotec.2016.03.052 -
计量
- 文章访问数: 43
- 被引次数: 0