留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牡蛎诺如病毒受体类Lewis抗原合成相关基因CgFUT5的克隆与表达鉴定

桂彬彬 曲梦 张蔚然 李明玉 江艳华 姚琳 王联珠

桂彬彬, 曲梦, 张蔚然, 李明玉, 江艳华, 姚琳, 王联珠. 牡蛎诺如病毒受体类Lewis抗原合成相关基因CgFUT5的克隆与表达鉴定[J]. 南方水产科学. doi: 10.12131/20230060
引用本文: 桂彬彬, 曲梦, 张蔚然, 李明玉, 江艳华, 姚琳, 王联珠. 牡蛎诺如病毒受体类Lewis抗原合成相关基因CgFUT5的克隆与表达鉴定[J]. 南方水产科学. doi: 10.12131/20230060
GUI Binbin, QU Meng, ZHANG Weiran, LI Mingyu, JIANG Yanhua, YAO Lin, WANG Lianzhu. Cloning, expression and identification of a gene CgFUT5 associated with Lewis antigen synthesis of Oyster norovirus receptors[J]. South China Fisheries Science. doi: 10.12131/20230060
Citation: GUI Binbin, QU Meng, ZHANG Weiran, LI Mingyu, JIANG Yanhua, YAO Lin, WANG Lianzhu. Cloning, expression and identification of a gene CgFUT5 associated with Lewis antigen synthesis of Oyster norovirus receptors[J]. South China Fisheries Science. doi: 10.12131/20230060

牡蛎诺如病毒受体类Lewis抗原合成相关基因CgFUT5的克隆与表达鉴定

doi: 10.12131/20230060
基金项目: 国家重点研发计划项目 (2017YFC1600703);国家自然科学基金青年科学基金项目 (31101883);中国水产科学研究院基本科研业务费专项资金 (2020TD71);现代农业产业技术体系专项资金资助 (CARS-49)
详细信息
    作者简介:

    桂彬彬 (1996—),男,硕士研究生,研究方向为水产品质量安全与标准化。E-mail: guibinbingo@163.com

    通讯作者:

    姚 琳 (1980—),男,研究员,博士,研究方向为水产品质量安全与标准化。E-mail: yaolin@ysfri.ac.cn

    王联珠 (1963—),女,研究员,研究方向为水产品质量安全与标准化。E-mail: lianzhu_wang@aliyun.com

  • 中图分类号: TS 254.7

Cloning, expression and identification of a gene CgFUT5 associated with Lewis antigen synthesis of Oyster norovirus receptors

  • 摘要: Lewis抗原被认为是诺如病毒特异性结合受体,作为诺如病毒传播载体,牡蛎中也存在着类Lewis抗原,但牡蛎合成这种碳水化合物的途径尚未阐明。为解析牡蛎中诺如病毒受体类Lewis抗原的合成路径,利用cDNA末端快速扩增 (Rapid amplification of cDNA ends, RACE) 技术克隆得到太平洋牡蛎 (Crassostrea gigas) 的CgFUT5基因全序列并进行生物信息学分析,通过实时荧光定量聚合酶链式反应 (RT-qPCR) 分析其在5种组织中的表达情况。构建原核表达质粒转化大肠杆菌 (Escherichia coli) 实现异源表达,并通过免疫印迹法 (Western blot) 鉴定免疫原性。克隆得到了具有1 173 bp开放阅读区的CgFUT5基因cDNA序列,系统发育树显示CgFUT5基因与多个物种具有合成Lewis抗原功能的岩藻糖基转移酶基因遗传学关系较近。重组CgFUT5蛋白可在大肠杆菌中过量表达,且表达的重组CgFUT5蛋白与抗人FUT5抗体及抗6×His标签抗体均能特异性结合。研究发现CgFUT5基因在牡蛎鳃组织中大量表达,CgFUT5蛋白与人FUT5蛋白具有相似的免疫原性,推测牡蛎中存在着类Lewis抗原的合成通路,并且调控牡蛎类Lewis抗原合成的基因还具有组织表达差异性。
  • 图  1  太平洋牡蛎FUT5基因全长及氨基酸序列

    Figure  1.  Full length and amino acid sequence of FUT5 gene in C. gigas

    图  2  CgFUT5 蛋白跨膜结构分析

    Figure  2.  Transmembrane structure analysis of CgFUT5 protein

    图  3  FUTs 家族系统发育树

    Figure  3.  Phylogenetic tree of FUTs family

    图  4  CgFUT5 基因在太平洋牡蛎 5 种组织中的相对表达量

    注:不同字母代表组间极显著性差异 (P<0.01)。

    Figure  4.  Relative expression of CgFUT5 gene in five tissues of C. gigas

    Note: Different letters represent extremely significant differences among the groups (P<0.01).

    图  5  CgFUT5重组蛋白的SDS-PAGE电泳分析

    Figure  5.  Analysis of CgFUT5 recombinant protein by SDS-PAGE electrophoresis

    图  6  以鼠抗 6×His 标签单克隆抗体为一抗分析CgFUT5 表达蛋白

    Figure  6.  Expression of CgFUT5 protein analyzed by mouse anti-6×His labelled monoclonal antibody as primary antibody

    图  7  以兔抗人 FUT5 单克隆抗体为一抗分析CgFUT5 表达蛋白

    Figure  7.  Expression protein of CgFUT5 analyzed by rabbit anti-human FUT5 monoclonal antibody as primary antibody

    表  1  实验中所用引物

    Table  1.   Primers used in this experiment

    引物
    Primer
    序列 (5'—3')
    Sequence (5'−3')
    用途
    Function
    FT5-1 CCAGAGCCAAAAACCTCACTC 中间片段克隆
    RT5-1 TCCCAGCGAAATCTACTTCC
    RRT5 GATTACGCCAAGCTTGTAATGACTGGACACGACACTGTTCTTG RACE
    FRT5 GATTACGCCAAGCTTACGCATCTCCTGAAGAATTGGCTAAGG
    Q-FT5-A TCTGTATTCTGTAAGGCCGGAGTGG 荧光定量组织表达分析
    Q-RT5-A AGTTTCGGGACAATGGGATTTCTCG
    F-actin CTGTGCTACGTTGCCCTGGACTT
    R-actin TGGGCACCTGAATCGCTCGTT
    下载: 导出CSV
  • [1] FISCHER W C, PERIN J, ARYEE M J, et al. Diarrhea incidence in low- and middle-income countries in 1990 and 2010: a systematic review[J]. BMC Public Health, 2012, 12: 220. doi: 10.1186/1471-2458-12-220
    [2] NORDGREN J, SVENSSON L. Genetic susceptibility to human norovirus infection: an update[J]. Viruses, 2019, 11(3): 226. doi: 10.3390/v11030226
    [3] TEUNIS P F M, MOE C L, LIU P, et al. Norwalk virus: how infectious is it?[J]. J Med Virol, 2008, 80(8): 1468-1476. doi: 10.1002/jmv.21237
    [4] TAN M, JIANG X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle[J]. Trends Microbiol, 2005, 13(6): 285-293. doi: 10.1016/j.tim.2005.04.004
    [5] ATMAR R L, RAMANI S, ESTES M K. Human noroviruses: recent advances in a 50-year history[J]. Curr Opin Infect Dis, 2018, 31(5): 422-432. doi: 10.1097/QCO.0000000000000476
    [6] HUNT K, DORÉ B, KEAVENEY S, et al. A quantitative exposure assessment model for norovirus in oysters harvested from a classified production area[J]. Microb Risk Anal, 2023, 23: 100247. doi: 10.1016/j.mran.2023.100247
    [7] RAZAFIMAHEFA R M, LUDWIG-BEGALL L F, THIRY E. Cockles and mussels, alive, alive, oh: the role of bivalve molluscs as transmission vehicles for human norovirus infections[J]. Transbound Emerg Dis, 2020, 67(S2): 9-25. doi: 10.1111/tbed.13165
    [8] CAMPOS C J, LEES D N. Environmental transmission of human noroviruses in shellfish waters[J]. Appl Environ Microbiol, 2014, 80(12): 3552-3561. doi: 10.1128/AEM.04188-13
    [9] le GUYADER F, LOISY F, ATMAR R L, et al. Norwalk virus-specific binding to oyster digestive tissues[J]. Emerg Infect Dis, 2006, 12(6): 931-936. doi: 10.3201/eid1206.051519
    [10] HUANG P W, FARKAS T, MARIONNEAU S, et al. Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns[J]. J Infect Dis, 2003, 188(1): 19-31. doi: 10.1086/375742
    [11] TIAN P, BATES A H, JENSEN H M, et al. Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells[J]. Lett Appl Microbiol, 2006, 43(6): 645-651. doi: 10.1111/j.1472-765X.2006.02010.x
    [12] SAIKIA K, SAHARIA N, SINGH C S, et al. Association of histo-blood group antigens and predisposition to gastrointestinal diseases[J]. J Med Virol, 2022, 94(11): 5149-5162. doi: 10.1002/jmv.28028
    [13] SZLASA W, WILK K, KNECHT-GURWIN K, et al. Prognostic and therapeutic role of CD15 and CD15s in cancer[J]. Cancers, 2022, 14(9): 2203. doi: 10.3390/cancers14092203
    [14] AZIZ F, KHAN I, SHUKLA S, et al. Partners in crime: the Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer[J]. Pharmacol Ther, 2022, 232: 107994. doi: 10.1016/j.pharmthera.2021.107994
    [15] PEÑA-GIL N, SANTISO-BELLÓN C, GOZALBO-ROVIRA R, et al. The role of host glycobiology and gut microbiota in rotavirus and norovirus infection, an update[J]. Int J Mol Sci, 2021, 22(24): 13473. doi: 10.3390/ijms222413473
    [16] HARRINGTON P R, VINJE J, MOE C L, et al. Norovirus capture with histo-blood group antigens reveals novel virus-ligand interactions[J]. J Virol, 2004, 78(6): 3035-3045. doi: 10.1128/JVI.78.6.3035-3045.2004
    [17] ORIOL R. ABO, Hh, Lewis, and secretion[M]//CARTRON J, ROUGER P. Molecular basis of human blood group antigens. Boston, MA: Springer US, 1995: 37-73.
    [18] COSTACHE M, CAILLEAU A, FERNANDEZ-MATEOS P, et al. Advances in molecular genetics of α-2- and α-3/4-fucosyltransferases[J]. Transfus Clin Biol, 1997, 4(4): 367-382. doi: 10.1016/S1246-7820(97)80042-0
    [19] KEELEY T S, YANG S Y, LAU E. The diverse contributions of fucose linkages in cancer[J]. Cancers, 2019, 11(9): 1241. doi: 10.3390/cancers11091241
    [20] 孙玥, 王晓非. 岩藻糖基转移酶的研究进展[J]. 医学综述, 2019, 25(1): 28-33.
    [21] HOLGERSSON J, LÖFLING J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity[J]. Glycobiology, 2006, 16(7): 584-593. doi: 10.1093/glycob/cwj090
    [22] DERYA S M, SPIEGEL H, HANISCH F G, et al. Biotechnologically produced fucosylated oligosaccharides inhibit the binding of human noroviruses to their natural receptors[J]. J Biotechnol, 2020, 318: 31-38. doi: 10.1016/j.jbiotec.2020.05.001
    [23] ESHAGHI G M, TAN M T H, LI D. Influence of fucosidase-producing bifidobacteria on the HBGA antigenicity of oyster digestive tissue and the associated norovirus binding[J]. Int J Food Microbiol, 2021, 340: 109058. doi: 10.1016/j.ijfoodmicro.2021.109058
    [24] MA L P, SU L J, LIU H, et al. Norovirus contamination and the glycosphingolipid biosynthesis pathway in Pacific oyster: a transcriptomics study[J]. Fish Shellfish Immunol, 2017, 66: 26-34. doi: 10.1016/j.fsi.2017.04.023
    [25] 姜薇. 太平洋牡蛎类FUT2基因的克隆与时空表达[D]. 青岛: 中国海洋大学, 2014: 39-57.
    [26] 李春勇. 敌百虫诱导近江牡蛎 (Crassostrea hongkongensis) HSC70基因表达的定量研究[D]. 广州: 暨南大学, 2007: 23-38.
    [27] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [28] 教杨, 姚琳, 曲梦, 等. 牡蛎诺如病毒受体合成基因类FUT10的克隆与组织表达[J]. 食品安全质量检测学报, 2022, 13(1): 120-127. doi: 10.3969/j.issn.2095-0381.2022.1.spaqzljcjs202201016
    [29] TU Z, LIN Y N, LIN C H. Development of fucosyltransferase and fucosidase inhibitors[J]. Chem Soc Rev, 2013, 42(10): 4459-4475. doi: 10.1039/c3cs60056d
    [30] de VRIES T, KNEGTEL R M, HOLMES E H, et al. Fucosyltransferases: structure/function studies[J]. Glycobiology, 2001, 11(10): 119R-128R. doi: 10.1093/glycob/11.10.119R
    [31] NGUYEN K, van DIE I, GRUNDAHL K M, et al. Molecular cloning and characterization of the Caenorhabditis elegans α1, 3-fucosyltransferase family[J]. Glycobiology, 2007, 17(6): 586-599. doi: 10.1093/glycob/cwm023
    [32] le GUYADER F S, ATMAR R L, Le PENDU J. Transmission of viruses through shellfish: when specific ligands come into play[J]. Curr Opin Virol, 2012, 2(1): 103-110. doi: 10.1016/j.coviro.2011.10.029
    [33] 吴佳颖. 2011年-2021年诺如病毒在中国5岁以下急性胃肠炎儿童中的流行: 系统评价和荟萃分析[D]. 重庆: 重庆医科大学, 2022: 1-18.
    [34] 郎中凯, 甘雨露, 颜朝阳, 等. 2015—2021年重庆市万州区诺如病毒感染疫情流行特征分析[J]. 中国初级卫生保健, 2022, 36(11): 91-94.
    [35] 魏开心, 石安琪, 曹慜, 等. 宁夏地区2019-2020年诺如病毒所致感染性腹泻流行特征和病原学分析[J]. 病毒学报, 2023, 39(1): 96-104.
    [36] 赵金华, 龙江, 李得恩, 等. 青海省西宁市某幼儿园一起诺如病毒暴发疫情调查及分子流行特征分析[J]. 医学动物防制, 2023, 39(2): 116-119.
    [37] PAULSON J C, COLLEY K J. Glycosyltransferases: Structure, localization, and control of cell type-specific glycosylation[J]. J Biol Chem, 1989, 264(30): 17615-17618. doi: 10.1016/S0021-9258(19)84610-0
    [38] de VRIES T, STORM J, ROTTEVEEL F, et al. Production of soluble human alpha3-fucosyltransferase (FucT VII) by membrane targeting and in vivo proteolysis[J]. Glycobiology, 2001, 11(9): 711-717. doi: 10.1093/glycob/11.9.711
    [39] EL-BATTARI A, PROROK M, ANGATA K, et al. Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation[J]. Glycobiology, 2003, 13(12): 941-953. doi: 10.1093/glycob/cwg117
    [40] CICERON F, ROCHA J, KOUSAR S, et al. Expression, purification and biochemical characterization of AtFUT1, a xyloglucan-specific fucosyltransferase from Arabidopsis thaliana[J]. Biochimie, 2016, 128/129: 183-192. doi: 10.1016/j.biochi.2016.08.012
    [41] PETSCHACHER B, NIDETZKY B. Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems[J]. J Biotechnol, 2016, 235: 61-83. doi: 10.1016/j.jbiotec.2016.03.052
  • 加载中
计量
  • 文章访问数:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-25
  • 修回日期:  2023-06-29
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-08-04

目录

    /

    返回文章
    返回