Research on aquaculture area distribution of tuna in South China Sea
-
摘要: 南海是金枪鱼类的重要分布区,开展南海金枪鱼类养殖潜在适宜区选划研究具有重要意义。南海金枪鱼类的主要种类为黄鳍金枪鱼 (Thunnus albacares) 和鲣 (Katsuwonus pelamis),根据其物种出现点以及7种南海环境数据,采用最大熵 (Maximum Entropy, MaxEnt) 模型定量评估了南海黄鳍金枪鱼和鲣的潜在养殖适宜性指数。结果表明:1) 模型受试者工作特征曲线的下面值均大于0.848,表明模型准确度良好,可用于模拟金枪鱼类养殖潜在适宜区的分布;2) 表层溶解氧、表层水温、底层水温、底层盐度是影响南海黄鳍金枪鱼和鲣养殖适宜栖息地分布的重要环境因子。其中,黄鳍金枪鱼的最适宜范围为:表层溶解氧浓度201.52~242.68 mol·m−3、底层水温1.96~32.61 ℃、底层盐度34.37‰~35.26‰;鲣的最适宜范围为:表层溶解氧浓度200.83~208.35 mol·m−3、表层水温19.71~28.96 ℃、底层盐度34.30‰~35.26‰;3) 黄鳍金枪鱼和鲣的养殖潜在高适宜分布区域较为集中,黄鳍金枪鱼主要集中在东沙渔场、南沙中部渔场以及南沙中西部渔场的东北部,鲣主要集中在台湾南部渔场的中西部以及东沙渔场。Abstract: The South China Sea is an important distribution area of tuna, so it is important to carry out researches on potentially suitable areas for tuna aquaculture in that area. The main tuna species in the South China Sea are yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis), according to whose locations of occurrence and seven kinds of environmental data in that area, we used the Maximum Entropy (MaxEnt) Model to quantitatively evaluate the potential suitability indexes for their aquaculture. The results show that: 1) The face value of receiver operating characteristic curve of the model was greater than 0.84, indicating that the model is accurate and can be used to simulate the distribution of potentially suitable habitats for tuna. 2) Sea surface dissolved oxygen, sea surface temperature and sea benthic salinity were important environmental factors which affected the distribution of suitable habitats for yellowfin tuna and skipjack tuna in the South China Sea. The optimal sea surface dissolved oxygen, sea surface temperature and sea benthic salinity of yellowfin tuna were 201.52–242.68 mol·m−3, 1.96–32.61 ℃, 34.37‰–35.26‰, respectively, and those of skipjack tuna were 200.83–208.35 mol·m−3, 19.71–28.96 ℃, 34.30‰–35.26‰, respectively. 3) The distribution areas of yellowfin tuna were mainly concentrated in the Dongsha fishing ground, the middle Nansha fishing ground, and the northeast of the western and central Nansha fishing ground, while those of skipjack tuna were mainly concentrated in the western and central of the south Taiwan fishing ground and the Dongsha fishing ground.
-
Key words:
- Tunas /
- Potential suitable areas for aquaculture /
- MaxEnt model /
- South China Sea
1)1 农业部南海区渔政局, 广东省地图出版社. 南海渔场作业图集 (内部发行)[M]. 广州: 广东省地图出版社, 1994. -
表 1 模型检验结果
Table 1. Model test results
种类
Species训练数据 (AUC 值)
Training data (AUC value)测试数据 (AUC 值)
Test data (AUC value)AUC 值标准差
Standard deviation of AUC value黄鳍金枪鱼 T. albacares 0.872 3 0.848 1 0.022 4 鲣 K. pelamis 0.880 3 0.872 1 0.028 8 -
[1] KAPETSKY J M, AGUILAR-MANJARREZ J, JENNESS J. A global assessment of offshore mariculture potential from a spatial perspective[J]. FAO Fish Aqua Tech Pap, 2013(549): I. [2] TROELL M, HALLING C, NEORI A, et al. Integrated mariculture: asking the right questions[J]. Aquaculture, 2003, 226(1/2/3/4): 69-90. [3] 傅远佳, 严晓, 张芳, 等. 习近平同志关于向海经济的重要论述与实践研究[J]. 北部湾大学学报, 2022, 37(5): 76-83. [4] 周猛, 李东萍. 远洋的馈赠: 金枪鱼[J]. 中国水产, 2022(12): 104-106. doi: 10.3969/j.issn.1002-6681.2022.12.zhongguosc202212041 [5] 张成林, 刘晃, 徐皓, 等. 日本金枪鱼养殖产业现状及对中国的启示[J]. 渔业现代化, 2021, 48(5): 10-17. doi: 10.3969/j.issn.1007-9580.2021.05.002 [6] NATH S S, BOLTE J P, ROSS L G, et al. Applications of geographical information systems (GIS) for spatial decision support in aquaculture[J]. Aquac Eng, 2000, 23(1/2/3): 233-278. [7] OYINLOLA M A, REYGONDEAU G, WABNITZ C C C, et al. Global estimation of areas with suitable environmental conditions for mariculture species[J]. PLoS One, 2018, 13(1): e0191086. doi: 10.1371/journal.pone.0191086 [8] RADIARTA I N, SAITOH S I, MIYAZONO A. GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan[J]. Aquaculture, 2008, 284(1/2/3/4): 127-135. [9] GUISAN A, ZIMMERMANN N E. Predictive habitat distribution models in ecology[J]. Ecol Model, 2000, 135(2): 147-186. [10] GENTRY R R, FROEHLICH H E, GRIMM D, et al. Mapping the global potential for marine aquaculture[J]. Nat Ecol Evol, 2017, 1(9): 1317-1324. doi: 10.1038/s41559-017-0257-9 [11] FROEHLICH H E, GENTRY R R, HALPEM B S. Global change in marine aquaculture production potential under climate change[J]. Nat Ecol Evol, 2018, 2(11): 1745-1750. doi: 10.1038/s41559-018-0669-1 [12] 赵欣. 南海渔业资源开发利用的时空特征及其治理[J]. 世界地理研究, 2022, 31(4): 762-772. doi: 10.3969/j.issn.1004-9479.2022.04.20222006 [13] 张鹏, 杨吝, 张旭丰, 等. 南海金枪鱼和鸢乌贼资源开发现状及前景[J]. 南方水产, 2010, 6(1): 68-74. [14] PICHENS B A, CARROL R, SCHIRRIPA M J, et al. A systematic review of spatial habitat associations and modeling of marine fish distribution: a guide to predictors, methods, and knowledge gaps[J]. PLoS One, 2021, 16(5): e0251818. doi: 10.1371/journal.pone.0251818 [15] 樊伟, 沈新强, 林明森. 大西洋大眼金枪鱼渔场、资源及环境特征的研究[J]. 海洋学报(中文版), 2003(S2): 167-176. [16] 宋利明, 陈新军, 许柳雄. 大西洋中部黄鳍金枪鱼的垂直分布与有关环境因子的关系[J]. 海洋与湖沼, 2004, 35(1): 64-68. doi: 10.3321/j.issn:0029-814X.2004.01.010 [17] WEXLER J B, MARGULIES D, SCHOLE V P. Temperature and dissolved oxygen requirements for survival of yellowfin tuna, Thunnus albacares, larvae[J]. J Exp Mar Biol Ecol, 2011, 404(1/2): 63-72. [18] MUGO R, SAITOH S E I I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x [19] 杨胜龙, 张禹, 樊伟, 等. 热带印度洋大眼金枪鱼渔场时空分布与温跃层关系[J]. 中国水产科学, 2012, 19(4): 679-689. [20] 纪世建, 周为峰, 王鲁民, 等. 南海及临近海域黄鳍金枪鱼渔场时空分布与海表温度的关系[J]. 海洋渔业, 2016, 38(1): 9-16. doi: 10.3969/j.issn.1004-2490.2016.01.002 [21] 王少琴, 许柳雄, 朱国平, 等. 中西太平洋金枪鱼围网的黄鳍金枪鱼CPUE时空分布及其与环境因子的关系[J]. 大连海洋大学学报, 2014, 29(3): 303-308. doi: 10.3969/J.ISSN.2095-1388.2014.03.022 [22] NYAKARAHUKA L, AYEBARE S, MOSOMTAI G, et al. Ecological niche modeling for filoviruses: a risk map for Ebola and Marburg virus disease outbreaks in Uganda[J]. PLoS Curr, 2017, 9. DOI: 10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1. [23] BROWN J L. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[J]. Methods Ecol Evol, 2014, 5(7): 694-700. doi: 10.1111/2041-210X.12200 [24] NAIMI B, ARAÚJO M B. SDM: a reproducible and extensible R platform for species distribution modelling[J]. Ecography, 2016, 39(4): 368-375. doi: 10.1111/ecog.01881 [25] RANDIN C F, DIRNBÖCK T, DULLINGER S, et al. Are niche-based species distribution models transferable in space?[J]. J Biogeogr, 2006, 33(10): 1689-1703. doi: 10.1111/j.1365-2699.2006.01466.x [26] BEARD K, KIMBLE M, YUAN J, et al. A method for heterogeneous spatio-temporal data integration in support of marine aquaculture site selection[J]. J Mar Sci Eng, 2020, 8(2): 96. doi: 10.3390/jmse8020096 [27] YU S E, DONG S L, ZHANG Z X, et al. Mapping the potential for offshore aquaculture of salmonids in the Yellow Sea[J]. Mar Life Sci Technol, 2022, 4(3): 329-342. doi: 10.1007/s42995-022-00141-2 [28] WILTSHIRE K H, TANNER J E. Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species[J]. Ecol Model, 2020, 429: 109071. doi: 10.1016/j.ecolmodel.2020.109071 [29] FREEMAN O E. Impact of climate change on aquaculture and fisheries in Nigeria: a review[J]. Int J Multidiscip Re Dev, 2017, 4(1): 53-59. [30] MCKINDSEY C W, THETMEYER H, LANDR T, et al. Review of recent carrying capacity models for bivalve culture and recommendations for research and management[J]. Aquaculture, 2006, 261(2): 451-462. doi: 10.1016/j.aquaculture.2006.06.044 [31] 南海所开展“金枪鱼野捕与驯养关键技术研究与应用示范”研究通过现场测试[EB/OL]. (2022-07-28)[2023-03-03]. http://www.scsfri.ac.cn/info/1003/23380.htm. [32] BROWN A R, LILLEY M, SHUTLER J, et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries[J]. Rev Aquac, 2020, 12(3): 1663-1688. [33] KOVE W. Key factors influencing juvenile quality in mariculture: a review[J]. Isr J Aquac, 2003, 55(4): 283-297. [34] CHANG Y, LEE M A, LEE K T, et al. Adaptation of fisheries and mariculture management to extreme oceanic environmental changes and climate variability in Taiwan[J]. Mar Policy, 2013, 38: 476-482. doi: 10.1016/j.marpol.2012.08.002 [35] NILSEN A, HAGEN Ø, JOHNSEN C A, et al. The importance of exercise: increased water velocity improves growth of Atlantic salmon in closed cages[J]. Aquaculture, 2019, 501: 537-546. doi: 10.1016/j.aquaculture.2018.09.057 [36] MATEAR R J, HIRST A C, MCNEIL B I. Changes in dissolved oxygen in the Southern Ocean with climate change[J]. Geochem Geophys Geosyst, 2000, 1(11): 2000GC000086. doi: 10.1029/2000GC000086 [37] GRIGORAKIS K, RIGOS G. Aquaculture effects on environmental and public welfare: the case of Mediterranean mariculture[J]. Chemosphere, 2011, 85(6): 899-919. doi: 10.1016/j.chemosphere.2011.07.015 [38] LI H M, LI X M, LI Q, et al. Environmental response to long-term mariculture activities in the Weihai coastal area, China[J]. Sci Total Environ, 2017, 601: 22-31. [39] 乐家华, 鲁洁, 乐章太. 日本金枪鱼养殖产业发展及其启示[J]. 中国渔业经济, 2021, 39(5): 103-111. doi: 10.3969/j.issn.1009-590X.2021.05.012 -