留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海金枪鱼类养殖区域分布研究

张艳萍 乐家华 闫周府

张艳萍, 乐家华, 闫周府. 南海金枪鱼类养殖区域分布研究[J]. 南方水产科学, 2023, 19(5): 48-57. doi: 10.12131/20230058
引用本文: 张艳萍, 乐家华, 闫周府. 南海金枪鱼类养殖区域分布研究[J]. 南方水产科学, 2023, 19(5): 48-57. doi: 10.12131/20230058
ZHANG Yanping, LE Jiahua, YAN Zhoufu. Research on aquaculture area distribution of tuna in South China Sea[J]. South China Fisheries Science, 2023, 19(5): 48-57. doi: 10.12131/20230058
Citation: ZHANG Yanping, LE Jiahua, YAN Zhoufu. Research on aquaculture area distribution of tuna in South China Sea[J]. South China Fisheries Science, 2023, 19(5): 48-57. doi: 10.12131/20230058

南海金枪鱼类养殖区域分布研究

doi: 10.12131/20230058
基金项目: 国家自然科学基金青年基金项目 (72103134)
详细信息
    作者简介:

    张艳萍 (1999—),女,硕士研究生,研究方向为渔业资源。E-mail: yokiy1988@163.com

    通讯作者:

    乐家华 (1963—),男,副教授,研究方向为渔业经济与管理。E-mail: jhle@shou.edu.cn

  • 1农业部南海区渔政局, 广东省地图出版社. 南海渔场作业图集 (内部发行)[M]. 广州: 广东省地图出版社, 1994.
  • 中图分类号: S 931.2

Research on aquaculture area distribution of tuna in South China Sea

  • 摘要: 南海是金枪鱼类的重要分布区,开展南海金枪鱼类养殖潜在适宜区选划研究具有重要意义。南海金枪鱼类的主要种类为黄鳍金枪鱼 (Thunnus albacares) 和鲣 (Katsuwonus pelamis),根据其物种出现点以及7种南海环境数据,采用最大熵 (Maximum Entropy, MaxEnt) 模型定量评估了南海黄鳍金枪鱼和鲣的潜在养殖适宜性指数。结果表明:1) 模型受试者工作特征曲线的下面值均大于0.848,表明模型准确度良好,可用于模拟金枪鱼类养殖潜在适宜区的分布;2) 表层溶解氧、表层水温、底层水温、底层盐度是影响南海黄鳍金枪鱼和鲣养殖适宜栖息地分布的重要环境因子。其中,黄鳍金枪鱼的最适宜范围为:表层溶解氧浓度201.52~242.68 mol·m−3、底层水温1.96~32.61 ℃、底层盐度34.37‰~35.26‰;鲣的最适宜范围为:表层溶解氧浓度200.83~208.35 mol·m−3、表层水温19.71~28.96 ℃、底层盐度34.30‰~35.26‰;3) 黄鳍金枪鱼和鲣的养殖潜在高适宜分布区域较为集中,黄鳍金枪鱼主要集中在东沙渔场、南沙中部渔场以及南沙中西部渔场的东北部,鲣主要集中在台湾南部渔场的中西部以及东沙渔场。
    1)  1农业部南海区渔政局, 广东省地图出版社. 南海渔场作业图集 (内部发行)[M]. 广州: 广东省地图出版社, 1994.
  • 图  1  研究区域两种金枪鱼类分布记录

    Figure  1.  Distribution of two tuna species in survey area

    图  2  Jackknife 检验不包含某个环境因子 (a) 或仅包含某个环境因子 (b) 的得分

    Figure  2.  Score of Jackknife test without a certain environmental factor (a) or with only one environmental factor (b)

    图  3  环境变量的贡献率

    Figure  3.  Contribution rate of environmental variables

    图  4  重要环境因子对金枪鱼适生性指数的响应曲线

    Figure  4.  Response curve of important environmental factors to suitable index of tuna

    图  5  南海金枪鱼类适宜性指数分布

    Figure  5.  Suitability index distribution of tuna in South China Sea

    图  6  南海海域金枪鱼丰富度分布图

    Figure  6.  Tuna richness distribution in South China Sea

    表  1  模型检验结果

    Table  1.   Model test results

    种类
    Species
    训练数据 (AUC 值)
    Training data (AUC value)
    测试数据 (AUC 值)
    Test data (AUC value)
    AUC 值标准差
    Standard deviation of AUC value
    黄鳍金枪鱼 T. albacares 0.872 3 0.848 1 0.022 4
    K. pelamis 0.880 3 0.872 1 0.028 8
    下载: 导出CSV
  • [1] KAPETSKY J M, AGUILAR-MANJARREZ J, JENNESS J. A global assessment of offshore mariculture potential from a spatial perspective[J]. FAO Fish Aqua Tech Pap, 2013(549): I.
    [2] TROELL M, HALLING C, NEORI A, et al. Integrated mariculture: asking the right questions[J]. Aquaculture, 2003, 226(1/2/3/4): 69-90.
    [3] 傅远佳, 严晓, 张芳, 等. 习近平同志关于向海经济的重要论述与实践研究[J]. 北部湾大学学报, 2022, 37(5): 76-83.
    [4] 周猛, 李东萍. 远洋的馈赠: 金枪鱼[J]. 中国水产, 2022(12): 104-106. doi: 10.3969/j.issn.1002-6681.2022.12.zhongguosc202212041
    [5] 张成林, 刘晃, 徐皓, 等. 日本金枪鱼养殖产业现状及对中国的启示[J]. 渔业现代化, 2021, 48(5): 10-17. doi: 10.3969/j.issn.1007-9580.2021.05.002
    [6] NATH S S, BOLTE J P, ROSS L G, et al. Applications of geographical information systems (GIS) for spatial decision support in aquaculture[J]. Aquac Eng, 2000, 23(1/2/3): 233-278.
    [7] OYINLOLA M A, REYGONDEAU G, WABNITZ C C C, et al. Global estimation of areas with suitable environmental conditions for mariculture species[J]. PLoS One, 2018, 13(1): e0191086. doi: 10.1371/journal.pone.0191086
    [8] RADIARTA I N, SAITOH S I, MIYAZONO A. GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan[J]. Aquaculture, 2008, 284(1/2/3/4): 127-135.
    [9] GUISAN A, ZIMMERMANN N E. Predictive habitat distribution models in ecology[J]. Ecol Model, 2000, 135(2): 147-186.
    [10] GENTRY R R, FROEHLICH H E, GRIMM D, et al. Mapping the global potential for marine aquaculture[J]. Nat Ecol Evol, 2017, 1(9): 1317-1324. doi: 10.1038/s41559-017-0257-9
    [11] FROEHLICH H E, GENTRY R R, HALPEM B S. Global change in marine aquaculture production potential under climate change[J]. Nat Ecol Evol, 2018, 2(11): 1745-1750. doi: 10.1038/s41559-018-0669-1
    [12] 赵欣. 南海渔业资源开发利用的时空特征及其治理[J]. 世界地理研究, 2022, 31(4): 762-772. doi: 10.3969/j.issn.1004-9479.2022.04.20222006
    [13] 张鹏, 杨吝, 张旭丰, 等. 南海金枪鱼和鸢乌贼资源开发现状及前景[J]. 南方水产, 2010, 6(1): 68-74.
    [14] PICHENS B A, CARROL R, SCHIRRIPA M J, et al. A systematic review of spatial habitat associations and modeling of marine fish distribution: a guide to predictors, methods, and knowledge gaps[J]. PLoS One, 2021, 16(5): e0251818. doi: 10.1371/journal.pone.0251818
    [15] 樊伟, 沈新强, 林明森. 大西洋大眼金枪鱼渔场、资源及环境特征的研究[J]. 海洋学报(中文版), 2003(S2): 167-176.
    [16] 宋利明, 陈新军, 许柳雄. 大西洋中部黄鳍金枪鱼的垂直分布与有关环境因子的关系[J]. 海洋与湖沼, 2004, 35(1): 64-68. doi: 10.3321/j.issn:0029-814X.2004.01.010
    [17] WEXLER J B, MARGULIES D, SCHOLE V P. Temperature and dissolved oxygen requirements for survival of yellowfin tuna, Thunnus albacares, larvae[J]. J Exp Mar Biol Ecol, 2011, 404(1/2): 63-72.
    [18] MUGO R, SAITOH S E I I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
    [19] 杨胜龙, 张禹, 樊伟, 等. 热带印度洋大眼金枪鱼渔场时空分布与温跃层关系[J]. 中国水产科学, 2012, 19(4): 679-689.
    [20] 纪世建, 周为峰, 王鲁民, 等. 南海及临近海域黄鳍金枪鱼渔场时空分布与海表温度的关系[J]. 海洋渔业, 2016, 38(1): 9-16. doi: 10.3969/j.issn.1004-2490.2016.01.002
    [21] 王少琴, 许柳雄, 朱国平, 等. 中西太平洋金枪鱼围网的黄鳍金枪鱼CPUE时空分布及其与环境因子的关系[J]. 大连海洋大学学报, 2014, 29(3): 303-308. doi: 10.3969/J.ISSN.2095-1388.2014.03.022
    [22] NYAKARAHUKA L, AYEBARE S, MOSOMTAI G, et al. Ecological niche modeling for filoviruses: a risk map for Ebola and Marburg virus disease outbreaks in Uganda[J]. PLoS Curr, 2017, 9. DOI: 10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1.
    [23] BROWN J L. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[J]. Methods Ecol Evol, 2014, 5(7): 694-700. doi: 10.1111/2041-210X.12200
    [24] NAIMI B, ARAÚJO M B. SDM: a reproducible and extensible R platform for species distribution modelling[J]. Ecography, 2016, 39(4): 368-375. doi: 10.1111/ecog.01881
    [25] RANDIN C F, DIRNBÖCK T, DULLINGER S, et al. Are niche-based species distribution models transferable in space?[J]. J Biogeogr, 2006, 33(10): 1689-1703. doi: 10.1111/j.1365-2699.2006.01466.x
    [26] BEARD K, KIMBLE M, YUAN J, et al. A method for heterogeneous spatio-temporal data integration in support of marine aquaculture site selection[J]. J Mar Sci Eng, 2020, 8(2): 96. doi: 10.3390/jmse8020096
    [27] YU S E, DONG S L, ZHANG Z X, et al. Mapping the potential for offshore aquaculture of salmonids in the Yellow Sea[J]. Mar Life Sci Technol, 2022, 4(3): 329-342. doi: 10.1007/s42995-022-00141-2
    [28] WILTSHIRE K H, TANNER J E. Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species[J]. Ecol Model, 2020, 429: 109071. doi: 10.1016/j.ecolmodel.2020.109071
    [29] FREEMAN O E. Impact of climate change on aquaculture and fisheries in Nigeria: a review[J]. Int J Multidiscip Re Dev, 2017, 4(1): 53-59.
    [30] MCKINDSEY C W, THETMEYER H, LANDR T, et al. Review of recent carrying capacity models for bivalve culture and recommendations for research and management[J]. Aquaculture, 2006, 261(2): 451-462. doi: 10.1016/j.aquaculture.2006.06.044
    [31] 南海所开展“金枪鱼野捕与驯养关键技术研究与应用示范”研究通过现场测试[EB/OL]. (2022-07-28)[2023-03-03]. http://www.scsfri.ac.cn/info/1003/23380.htm.
    [32] BROWN A R, LILLEY M, SHUTLER J, et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries[J]. Rev Aquac, 2020, 12(3): 1663-1688.
    [33] KOVE W. Key factors influencing juvenile quality in mariculture: a review[J]. Isr J Aquac, 2003, 55(4): 283-297.
    [34] CHANG Y, LEE M A, LEE K T, et al. Adaptation of fisheries and mariculture management to extreme oceanic environmental changes and climate variability in Taiwan[J]. Mar Policy, 2013, 38: 476-482. doi: 10.1016/j.marpol.2012.08.002
    [35] NILSEN A, HAGEN Ø, JOHNSEN C A, et al. The importance of exercise: increased water velocity improves growth of Atlantic salmon in closed cages[J]. Aquaculture, 2019, 501: 537-546. doi: 10.1016/j.aquaculture.2018.09.057
    [36] MATEAR R J, HIRST A C, MCNEIL B I. Changes in dissolved oxygen in the Southern Ocean with climate change[J]. Geochem Geophys Geosyst, 2000, 1(11): 2000GC000086. doi: 10.1029/2000GC000086
    [37] GRIGORAKIS K, RIGOS G. Aquaculture effects on environmental and public welfare: the case of Mediterranean mariculture[J]. Chemosphere, 2011, 85(6): 899-919. doi: 10.1016/j.chemosphere.2011.07.015
    [38] LI H M, LI X M, LI Q, et al. Environmental response to long-term mariculture activities in the Weihai coastal area, China[J]. Sci Total Environ, 2017, 601: 22-31.
    [39] 乐家华, 鲁洁, 乐章太. 日本金枪鱼养殖产业发展及其启示[J]. 中国渔业经济, 2021, 39(5): 103-111. doi: 10.3969/j.issn.1009-590X.2021.05.012
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  29
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-05-11
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2023-10-05

目录

    /

    返回文章
    返回