Effects of replacement of fish meal by fermented cottonseed meal on growth performance, feed utilization and intestinal bacteria community of juvenile golden pompano (Trachinotus ovatus)
-
摘要: 发酵棉籽粉是一种优质植物蛋白原料,具有替代饲料鱼粉的潜力。为评估发酵棉籽粉作为卵形鲳鲹 (Trachinotus ovatus) 饲料蛋白源的适宜性及适宜替代水平,用发酵棉籽粉分别替代卵形鲳鲹幼鱼饲料中0% (对照组)、25%、50%、75%和100%的鱼粉 (基础饲料中鱼粉质量分数为35%),配制成5种实验饲料,饲喂幼鱼 [初始体质量为 (12.57±0.25) g] 7周,探究了发酵棉籽粉替代鱼粉对幼鱼存活、生长和饲料利用性能及肠道菌群组成的影响。结果显示,发酵棉籽粉替代组的存活、生长、饲料利用率以及蛋白质、脂肪沉积效率均低于鱼粉对照组,而25%和50%替代组与对照组无显著性差异 (P>0.05)。但当发酵棉籽粉替代75%~100%鱼粉时,刺激了卵形鲳鲹肝脏的抗氧化系统,使总超氧化物歧化酶 (T-SOD) 和过氧化氢酶 (CAT) 活性高于对照组。此外肝脏HE染色切片显示其细胞空泡化现象加剧,100%替代组的血清总蛋白、白蛋白和球蛋白含量降低,肝脏合成蛋白能力可能下降。发酵棉籽粉高水平替代鱼粉会影响卵形鲳鲹的肠道菌群组成,表现为有益菌丰度下降、有害菌丰度上升,从而影响了肠道菌群功能。综合考虑生长性能和鱼体健康,建议卵形鲳鲹饲料中发酵棉籽粉替代鱼粉水平以25%为宜。Abstract: Fermented cottonseed meal (FCSM) is a high-quality plant protein ingredient with potential to replace fishmeal in feed. To evaluate the suitability of FCSM as a protein source in the diet of juvenile golden pompano (Trachinotus ovatus) and its appropriate replacement level, we had fed the juveniles with initial body mass of (12.57±0.25) g for seven weeks by five diets to replace 0% (Control group), 25%, 50% and 100% of fishmeal by FCSM, and the fish meal in reference diet was 35%. Then we investigated the effects of FCSM replacement of fishmeal on the survival, growth, feed utilization performance and intestinal microflora of the juveniles. The results show that the survival, growth, feed efficiency, dietary protein and lipid deposition rates were lower in FCSM treatments compared with those in reference diet, while the differences between 25%, 50% replacement groups and the reference diet were not significant (P>0.05). However, the liver antioxidant system was stimulated, and the activities of total superoxide dismutase (T-SOD) and catalase (CAT) in 75%−100% replacement groups were higher than those in the control group. In addition, the liver hematoxylin-eosin-stained sections show that the cellular vacuolation phenomenon was aggravated. The contents of total protein, albumin and globulin in serum in 100% replacement group were reduced, and the protein synthesis capacity of liver might be impaired. High-level replacement of fish meal by FCSM affected the composition of intestinal flora, with the abundance of beneficial bacteria decreasing and that of harmful bacteria increasing. Taking into account both growth performance and fish health, it is recommended to replace fish meal with 25% FCSM in the diet for T. ovatus.
-
Key words:
- Trachinotus ovatus /
- Fermented cottonseed meal /
- Growth /
- Feed utilization /
- Intestinal flora
-
图 2 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹的血清总蛋白、白蛋白、球蛋白和尿素氮浓度
注:方柱上不同字母表示具有显著性差异 (P<0.05)。
Figure 2. Contents of serum total protein, albumin, globulin and blood urea nitrogen of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements
Note: Different letters on the bars are significantly different (P<0.05).
表 1 实验饲料组成及营养组成 (干物质)
Table 1. Formulation and proximate composition of reference and experimental diets (Dry mass)
% 原料 Ingredient 发酵棉籽粉替代鱼粉比例 Proportion of FCSM replacement 0% 25% 50% 75% 100% 鱼粉① Fish meal 35.00 26.25 17.50 8.75 0.00 发酵棉籽粉② Fermented cottonseed meal 0.00 11.47 22.94 34.41 45.00 大豆浓缩蛋白③ Soy protein Conc 13.00 13.00 13.00 13.00 13.00 鸡肉粉④ Chicken meal 5.00 5.00 5.00 5.00 5.00 赖氨酸 L-Lysine 0.00 0.21 0.42 0.63 0.85 蛋氨酸 DL-methionine 0.00 0.10 0.19 0.29 0.39 高筋面粉⑤ Gluten flour 20.00 20.00 20.00 20.00 20.00 诱食剂⑥ Attractant 0.30 0.30 0.30 0.30 0.30 卵磷脂 Lecithin 2.50 2.50 2.50 2.50 2.50 鱼油 Fish oil 6.00 6.50 7.00 7.50 8.00 维生素和矿物质预混料⑦
Vitamin and mineral premix2.00 2.00 2.00 2.00 2.00 氯化胆碱 Choline chloride 0.50 0.50 0.50 0.50 0.50 磷酸二氢钙 Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00 维生素 Vitamin C 0.50 0.50 0.50 0.50 0.50 骨粉 Bone meal 13.20 9.67 6.15 2.62 0 营养成分分析 (干基) Analyzed proximate composition (Dry basis) 水分 Moisture 9.5±0.2 8.3±0.1 10.4±0.1 11.0±0.1 9.9±0.1 粗蛋白 Crude protein 40.6±0.3 41.6±0.3 43.3±0.3 44.6±0.1 44.9±0.1 粗脂肪 Crude lipid 9.7±0.1 9.7±0.2 9.8±0.1 9.8±0.15 9.8±0.1 粗纤维 Crude fiber 0.33 1.62 2.91 4.20 5.39 灰分 Ash 21.4±0.1 18.1±0.2 14.2±0.1 10.9±0.1 8.6±0.1 游离棉酚质量分数
Free gossypol mass fraction/(mg·kg−1)0 29.93 59.85 89.78 119.70 注:① 水分7.1% (质量分数,后同)、粗蛋白68.0%、粗脂肪8.0%、粗纤维0.2%、灰分16.4%;② 水分7.2%、粗蛋白59.7%、粗脂肪1.7%、粗纤维11.4%、灰分6.6%;③ 水分9.0%、粗蛋白65.0%、粗脂肪0.5%、粗纤维0.1%、灰分2.6%;④ 水分9.0%、粗蛋白65.0%、粗脂肪5.0%、粗纤维2.6%、灰分12.1%;⑤ 水分9.7%、粗蛋白16.4%、粗脂肪1.0%、粗纤维0.6%、灰分1.5%;⑥ 诱食剂为二甲基-β-丙酸噻亭(Dimethyl-β-propiothetin , DMPT)、甘氨酸、牛磺酸等比例混合;⑦ 维生素和矿物质预混料物质质量分数 (mg·kg−1):维生素A乙酸酯150 000 IU,维生素D3 75 000 IU,dl-α-生育酚乙酸酯2 500,亚硫酸氢烟酰胺甲萘醌250,硝酸硫铵 (维生素B1) 320,核黄素 (维生素B2) 700,盐酸吡哆醇 (维生素B6) 500,氰钴胺 (维生素B12) 4,肌醇4 000,L-抗坏血酸-2-磷酸酯5 500,烟酰胺3 800,D-泛酸钙1 600,叶酸80,D-生物素4,铜 (甘氨酸铜络合物) 200,一水硫酸亚铁1 800,硫酸锰450,硫酸锌5 500,碘酸钙100,亚硒酸钠15,硫酸钴50,乙氧基喹啉0~300,二丁基羟基甲苯0~750。 Note: ① Moisture 7.1% (Mass fraction, the same below), crude protein 68.0%, crude lipid 8.0%, crude fiber 0.2%, ash 16.4%; ② Moisture 7.2%, crude protein 59.7%, crude lipid 1.7%, crude fiber 11.4%, ash 6.6%; ③ Moisture 9.0%, crude protein 65.0%, crude lipid 0.5%, crude fiber 0.1%, ash 2.6%; ④ Moisture 9.0%, crude protein 65.0%, crude lipid 5.0%, crude fiber 2.6%, ash 12.1%; ⑤ Moisture 9.7%, crude protein 16.4%, crude lipid 1.0%, crude fiber 0.6%, ash 1.5%; ⑥ The palatability enhancer is a mixture of dimethyl-β-propionate, glycine and taurine; ⑦ Composition of vitamin and mineral premixa (mg·kg−1): Retinyl acetate 150 000 IU, Vitamin D3 75 000 IU, dl-α-tocopherol acetate 2 500 mg, Menadione nicotinamide bisulfite 250, Vitamin B1 320, Riboflavin (Vitamin B2) 700, Vitamin B6 500, Vitamin B12 4, Inositol 4 000, Cholinesalicylate 5 500, Nicotinamide 3 800, D-calcium pantothenate 1 600, Folic acid 80, D-biotin 4, Copper (Copperdiglycinate) 200, Ferrous sulfate monohydrate 1 800, Manganese (II) sulfate monohydrate 450, Zinc (Zinc sulfate monohydrate) 5 500, Iodine (calcium iodate) 100, Selenium (Sodium selenite) 15, Cobalt (Cobalt sulfate hydrate) 50, Ethoxyquin 0–300, Dibutylhydroxytoluene 0–750. 表 2 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹幼鱼的存活、生长和饲料利用性能
Table 2. Survival, growth and feed utilization of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements
指标
Index发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM 单因素方差分析
ANOVA
(P>F)线性趋势
Linear
trend
(P>F)二次趋势
Quadratic
trend
(P>F)0% (对照组
Control)25% 50% 75% 100% 成活率 Survival/% 85.00±5.09b 80.00±6.94ab 85.00±6.31b 72.50±5.34ab 63.33±2.72a 0.061 0.010 0.210 终末质量 FBW/g 42.34±3.92 40.78±2.62 39.87±1.49 39.14±3.80 35.08±1.38 0.487 0.095 0.648 体质量增长率 WGR/% 239.8±31.9 226.7±20.0 217.6±10.2 212.81±29.4 181.07±12.7 0.471 0.087 0.692 摄食率 FR/(%·d−1) 3.15±0.03 3.27±0.10 3.21±0.04 3.29±0.08 3.31±0.14 0.659 0.203 0.856 饲料利用率 FE 0.64±0.06b 0.59±0.07ab 0.61±0.01ab 0.54±0.06ab 0.45±0.05a 0.116 0.016 0.348 蛋白沉积率 PR/% 28.32±1.75b 27.12±2.86ab 26.21±1.64ab 21.94±3.14ab 17.17±1.78a 0.020 0.002 0.225 脂肪沉积率 LR/% 76.79±9.80c 67.04±4.14bc 64.41±1.43bc 48.73±4.11ab 25.50±4.63a 0.000 0.000 0.079 注:同行不同上标字母表示差异显著 (P<0.05),F代表显著性概率。后表同此。 Note: Values with different letters within the same row are significantly different (P<0.05). F represents the probability of significance. The same case in the following tables. 表 3 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹鱼体的营养组成 (湿基)
Table 3. Proximate composition of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements (wet basis) %
指标
Index发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM 单因素
方差分析
ANOVA
(P>F)线性趋势
Linear
trend
(P>F)二次趋势
Quadratic
trend
(P>F)0% (对照组
Control)25% 50% 75% 100% 水分质量分数
Mass fraction of moisture/%65.93±0.67a 66.37±0.32ab 67.13±0.19ab 68.30±0.54bc 70.26±0.58c 0.000 0.000 0.083 粗蛋白质量分数
Mass fraction of crude protein/%18.00±0.35 18.43±0.22 18.34±0.55 18.25±0.36 17.72±0.31 0.673 0.542 0.189 粗脂肪质量分数
Mass fraction of crude lipid/%10.31±0.53c 9.72±0.25bc 9.42±0.09bc 8.48±0.35b 6.57±0.25a 0.000 0.000 0.017 灰分质量分数
Mass fraction of ash/%4.30±0.17 4.21±0.05 4.43±0.13 4.25±0.06 4.65±0.17 0.162 0.089 0.256 表 4 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹鱼体的形体指标
Table 4. Physical indexes of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements
指标
Index发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM 单因素方差分析
ANOVA
(P>F)线性趋势
Linear trend
(P>F)二次趋势
Quadratic trend
(P>F)0% (对照组 Control) 25% 50% 75% 100% 肝体比 HIS/% 1.39±0.13b 0.91±0.05a 1.02±0.05a 1.14±0.08ab 1.06±0.04a 0.002 0.083 0.007 脏体比 VSI/% 6.34±0.16 6.21±0.14 5.80±0.41 6.31±0.16 6.44±0.19 0.388 0.686 0.124 肥满度 CF/(g·cm−3) 3.09±0.06 3.11±0.06 3.09±0.05 3.18±0.05 3.04±0.05 0.395 0.837 0.241 表 5 不同发酵棉籽粉替代鱼粉水平下卵形鲳鲹的肠道消化酶活性和肝脏抗氧化酶活性
Table 5. Digestive enzyme activities and hepatic antioxidant enzyme activities of juvenile T. ovatus fed with reference and experimental diets containing different FCSM replacements
指标
Index发酵棉籽粉替代鱼粉水平 Replacement of fish meal by FCSM 单因素
方差分析
ANOVA
(P>F)线性趋势
Linear
trend
(P>F)二次趋势
Quadratic
trend
(P>F)0%
(对照组 Control)25% 50% 75% 100% 胃蛋白酶活性
Pepsin activity/(U·mg−1)71.73±6.91 60.93±6.15 62.17±4.13 62.08±5.94 58.18±4.95 0.518 0.133 0.637 肠道胰蛋白酶活性
Intestinal trypsin activity/(U·mg−1)2 119.7±392.6 1 902.7±619.7 1 606.1±223.0 1 705.5±390.6 1 482.0±232.6 0.700 0.193 0.760 肠道α-淀粉酶活性
Intestine α-amylase activity /(U·mg−1)1.53±0.17 1.39±0.24 1.36±0.13 0.97±0.21 0.98±0.13 0.123 0.015 0.944 肠道脂肪酶活性
Intestinal lipase activity/(U·g−1)1.40±0.06a 1.73±0.08b 1.60±0.02ab 1.54±0.03ab 1.73±0.11b 0.018 0.026 0.536 肝脏超氧化物歧化酶活性
T-SOD of liver/(U·mg−1)444.86±33.68 432.68±29.54 445.68±17.98 484.21±37.00 450.95±13.16 0.794 0.540 0.802 肝脏过氧化氢酶活性
CAT of liver/(U·mg−1)39.59±7.73 46.32±6.51 41.83±3.32 50.94±4.31 48.02±0.49 0.494 0.174 0.792 肝脏总抗氧化能力
T-AOC of liver/(mmol·g−1)0.33±0.03 0.20±0.02 0.25±0.02 0.24±0.01 0.25±0.04 0.063 0.125 0.061 -
[1] FAO. The state of the world fisheries and aquaculture [M]. Rome: Food and Agricultural Organization of the United Nations, 2022: 1-3. [2] WU G Y. Recent advances in animal nutrition and metabolism [M]. Berlin: Springer Cham, 2022: 237-261. [3] BRITTEN G L, DUARTE C M, WORM B. Recovery of assessed global fish stocks remains uncertain[J]. Proc Natl Acad Sci USA, 2021, 118(31): e2108532118. doi: 10.1073/pnas.2108532118 [4] COTTRELL R S, BLANCHARD J L, HALPERN B S, et al. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030[J]. Nat Food, 2020, 1: 301-308. doi: 10.1038/s43016-020-0078-x [5] KHAN M A, WAHID A, AHMAD M, et al. Cotton production and uses [M]. Berlin: Springer, 2020: 978-981. [6] WANG J, CLARK G, JU M, et al. Effects of replacing menhaden fishmeal with cottonseed flour on growth performance, feed utilization and body composition of juvenile red drum Sciaenops ocellatus[J]. Aquaculture, 2020, 523: 735217. doi: 10.1016/j.aquaculture.2020.735217 [7] 余忠丽, 恽辉, 王俊青, 等. 一种酶解发酵生产棉籽蛋白的方法: CN112219934B [P]. 2021-07-16. [8] LIM S J, LEE K J. A microbial fermentation of soybean and cottonseed meal increases antioxidant activity and gossypol detoxification in diets for Nile tilapia, Oreochromis niloticus[J]. J World Aquac Soc, 2011, 42(4): 494-503. doi: 10.1111/j.1749-7345.2011.00491.x [9] 孙宏, 叶有标, 姚晓红, 等. 发酵棉籽粕部分替代鱼粉对黑鲷幼鱼生长性能, 体成分及血浆生化指标的影响[J]. 动物营养学报, 2014, 26(5): 1238-1245. doi: 10.3969/j.issn.1006-267x.2014.05.014 [10] SUN H, TANG J W, YAO X H, et al. Effects of replacement of fish meal with fermented cottonseed meal on growth performance, body composition and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone, 1931[J]. Aquac Res, 2016, 47(8): 2623-2632. doi: 10.1111/are.12711 [11] LIU B, GUO H Y, ZHU K C, et al. Growth, physiological, and molecular responses of golden pompano Trachinotus ovatus (Linnaeus, 1758) reared at different salinities[J]. Fish Physiol Biochem, 2019, 45: 1879-1893. doi: 10.1007/s10695-019-00684-9 [12] XUN P W, ZHOU C P, HUANG X L, et al. Effects of dietary sodium acetate on growth performance, fillet quality, plasma biochemistry, and immune function of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2022, 2022: 1-11. [13] 农业农村部渔业渔政管理局, 全球水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2022: 22. [14] WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquac Nutr, 2013, 19(3): 360-367. doi: 10.1111/j.1365-2095.2012.00964.x [15] ZHOU C P, HUANG Z, LIN H Z, et al. Effects of dietary leucine on glucose metabolism, lipogenesis and insulin pathway in juvenile golden pompano Trachinotus ovatus[J]. Aquac Rep, 2021, 19: 100626. doi: 10.1016/j.aqrep.2021.100626 [16] LIU K, LIU H, CHI S Y, et al. Effects of different dietary lipid sources on growth performance, body composition and lipid metabolism-related enzymes and genes of juvenile golden pompano, Trachinotus ovatus[J]. Aquac Res, 2018, 49(2): 717-725. doi: 10.1111/are.13502 [17] LI M M, ZHANG M, MA Y C, et al. Dietary supplementation with n-3 high unsaturated fatty acids decreases serum lipid levels and improves flesh quality in the marine teleost golden pompano Trachinotus ovatus[J]. Aquaculture, 2020, 516: 734632. doi: 10.1016/j.aquaculture.2019.734632 [18] FANG H H, ZHAO W, XIE J J, et al. Effects of dietary lipid levels on growth performance, hepatic health, lipid metabolism and intestinal microbiota on Trachinotus ovatus[J]. Aquac Nutr, 2021, 27(5): 1554-1568. doi: 10.1111/anu.13296 [19] ZHOU C P, GE X P, LIN H Z, et al. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus)[J]. Fish Shellfish Immunol, 2014, 41(2): 183-190. doi: 10.1016/j.fsi.2014.08.024 [20] XUN P W, LIN H Z, WANG R X, et al. Effects of dietary vitamin B1 on growth performance, intestinal digestion and absorption, intestinal microflora and immune response of juvenile golden pompano (Trachinotus ovatus)[J]. Aquaculture, 2019, 506: 75-83. doi: 10.1016/j.aquaculture.2019.03.017 [21] WANG J, GATLIN III D M, LI L H, et al. Dietary chromium polynicotinate improves growth performance and feed utilization of juvenile golden pompano (Trachinotus ovatus) with starch as the carbohydrate[J]. Aquaculture, 2019, 505: 405-411. doi: 10.1016/j.aquaculture.2019.02.060 [22] TAN X H, SUN Z Z, HUANG Z, et al. Effects of dietary hawthorn extract on growth performance, immune responses, growth-and immune-related genes expression of juvenile golden pompano (Trachinotus ovatus) and its susceptibility to Vibrio harveyi infection[J]. Fish Shellfish Immunol, 2017, 70: 656-664. doi: 10.1016/j.fsi.2017.09.041 [23] 马学坤. 卵形鲳鲹幼鱼对饲料中蛋白能量比和几种必需氨基酸需求的研究[D]. 青岛: 中国海洋大学, 2013: 26. [24] HARDY R W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal[J]. Aquac Res, 2010, 41(5): 770-776. doi: 10.1111/j.1365-2109.2009.02349.x [25] National Research Council. Nutrient requirements of fish and shrimp [M]. Now York: National Academies Press, 2011: 238. [26] WILSON R P, ROBINSON E H, POE W E. Apparent and true availability of amino acids from common feed ingredients for channel catfish[J]. J Nutr, 1981, 111(5): 923-929. doi: 10.1093/jn/111.5.923 [27] ZHAO W, LIU Z L, NIU J. Growth performance, intestinal histomorphology, body composition, hematological and antioxidant parameters of Oncorhynchus mykiss were not detrimentally affected by replacement of fish meal with concentrated dephenolization cottonseed protein[J]. Aquac Rep, 2021, 19: 100557. doi: 10.1016/j.aqrep.2020.100557 [28] XU X Y, YANG H, ZHANG C Y, et al. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, flesh quality and gossypol deposition of largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2022, 548: 737551. doi: 10.1016/j.aquaculture.2021.737551 [29] LIU H, DONG X H, TAN B P, et al. Effects of fish meal replacement by low-gossypol cottonseed meal on growth performance, digestive enzyme activity, intestine histology and inflammatory gene expression of silver sillago (Sillago sihama Forsskál) (1775)[J]. Aquac Nutr, 2020, 26(5): 1724-1735. doi: 10.1111/anu.13123 [30] BU X Y, CHEN A J, LIAN X Q, et al. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila[J]. Aquaculture, 2017, 479: 829-837. doi: 10.1016/j.aquaculture.2017.07.032 [31] XIE S C, ZHOU Q C, ZHANG X S, et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus)[J]. Aquaculture, 2022, 549: 737820. doi: 10.1016/j.aquaculture.2021.737820 [32] LI M H, ROBINSON E H. Use of cottonseed meal in aquatic animal diets: a review[J]. N Am J Aquac, 2006, 68(1): 14-22. doi: 10.1577/A05-028.1 [33] ROMANO G B, SCHEFFLER J A. Lowering seed gossypol content in glanded cotton (Gossypium hirsutum L.) lines[J]. Plant breed, 2008, 127(6): 619-624. doi: 10.1111/j.1439-0523.2008.01545.x [34] GAYLORD T G, GATLIN III D M. Determination of digestibility coefficients of various feedstuffs for red drum (Sciaenops ocellatus)[J]. Aquaculture, 1996, 139(3/4): 303-314. doi: 10.1016/0044-8486(95)01175-7 [35] 王开卓. 棉酚对草鱼肠道结构和免疫屏障的作用及其机制 [D]. 雅安: 四川农业大学, 2019: 1-2. [36] GONZÁLEZ-PEÑA M C, GOMES S Z, MOREIRA G S. Effects of dietary fiber on growth and gastric emptying time of the freshwater prawn Macrobrachiurn rosenbergii (de Man, 1879)[J]. J World Aquac Soc, 2002, 33(4): 441-447. doi: 10.1111/j.1749-7345.2002.tb00023.x [37] DIAS J, HUELVAN C, DINIS M T, et al. Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus labrax) juveniles[J]. Aquat Living Resour, 1998, 11(4): 219-226. doi: 10.1016/S0990-7440(98)89004-9 [38] LIU C, ZHAO L P, SHEN Y Q. A systematic review of advances in intestinal microflora of fish [J]. Fish Physiol Biochem, 2021, 47: 2041-2053. [39] 兰鲲鹏, 吴光德, 王珺, 等. 饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响[J]. 南方水产科学, 2022, 18(5): 55-65. doi: 10.12131/20220082 [40] SUN Y G, ZHANG S S, NIE Q X, et al. Gut firmicutes: relationship with dietary fiber and role in host homeostasis [J]. Crit Rev Food Sci Nutr, 2022: 1-16. DOI: 10.1080/10408398.2022.2098249. [41] THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut bacteroidetes: the food connection[J]. Front Microbiol, 2011, 2: 93. [42] MENETREY Q, SORLIN P, JUMAS-BILAK E, et al. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: emerging pathogens well-armed for life in the cystic fibrosis patients' lung[J]. Genes, 2021, 12(5): 610. doi: 10.3390/genes12050610 [43] YIN Z Q, LIU X B, QIAN C Q, et al. Pan-genome analysis of Delftia tsuruhatensis reveals important traits concerning the genetic diversity, pathogenicity, and biotechnological properties of the species[J]. Microbiol Spectr, 2022, 10(2): e02072-21. [44] LIU L, FENG Y, WEI L, et al. Genome-based taxonomy of brevundimonas with reporting Brevundimonas huaxiensis sp. nov[J]. Microbiol Spectr, 2021, 9(1): e00111-21. [45] SINGH S, SAHU C, PATEL S S, et al. Pandoraea apista bacteremia in a COVID-positive man: a rare coinfection case report from North India[J]. J Lab Phys, 2021, 13(2): 192-194. [46] ZHANG Z S, WANG X M, HAN S W, et al. Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing[J]. Int J Biol Macromol, 2018, 112: 796-802. doi: 10.1016/j.ijbiomac.2018.01.192 [47] LI W J, ZHANG L, WU H X, et al. Intestinal microbiota mediates gossypol-induced intestinal inflammation, oxidative stress, and apoptosis in fish[J]. J Agric Food Chem, 2022, 70(22): 6688-6697. doi: 10.1021/acs.jafc.2c01263 [48] WANG M M, WICHIENCHOT S, HE X W, et al. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota[J]. Trends Food Sci Technol, 2019, 88: 1-9. doi: 10.1016/j.jpgs.2019.03.005 [49] ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. doi: 10.1038/nature06450 [50] XU Y Q, ZHU Y, LI X T, et al. Dynamic balancing of intestinal short-chain fatty acids: the crucial role of bacterial metabolism[J]. Trends Food Sci Tech, 2020, 100: 118-130. doi: 10.1016/j.jpgs.2020.02.026 [51] KONDO T, KISHI M, FUSHIMI T, et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation[J]. J Agric Food Chem, 2009, 57(13): 5982-5986. doi: 10.1021/jf900470c [52] de VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1/2): 84-96. [53] GE H F, LI X F, WEISZMANN J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J]. Endocrinology, 2008, 149(9): 4519-4126. doi: 10.1210/en.2008-0059 [54] HONG Y H, NISHIMURA Y, HISHIKAWA D, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43[J]. Endocrinology, 2005, 146(12): 5092-5099. doi: 10.1210/en.2005-0545 [55] SAHURI-ARISOYLU M, BRODY L P, PARKINSON J R, et al. Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate[J]. Int J Obes, 2016, 40(6): 955-963. doi: 10.1038/ijo.2016.23 [56] JIA Y M, HONG J, LI H F, et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice[J]. Exp Physiol, 2017, 102(2): 273-281. doi: 10.1113/EP086114 [57] GAO Z G, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509-1517. doi: 10.2337/db08-1637 [58] 荀鹏伟. 卵形鲳鲹饲料脂肪需求量及短链脂肪酸的营养功能研究 [D]. 上海: 上海海洋大学, 2022: 105. [59] DU Z Y, TURCHINI G M. Are we actually measuring growth? An appeal to use a more comprehensive growth index system for advancing aquaculture research[J]. Rev Aquac, 2022, 14(2): 525-527. doi: 10.1111/raq.12604 [60] DENG J M, MAI K S, CHEN L Q, et al. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus×O. aureus)[J]. Fish Shellfish Immunol, 2015, 44(2): 436-444. doi: 10.1016/j.fsi.2015.03.018 [61] DODOU K. Investigations on gossypol: past and present developments[J]. Expert Opin Investig Drugs, 2005, 14(11): 1419-1434. doi: 10.1517/13543784.14.11.1419 [62] LIN Q R, LI C G, ZHA Q B, et al. Gossypol induces pyroptosis in mouse macrophages via a non-canonical inflammasome pathway[J]. Toxicol Appl Pharmacol, 2016, 292: 56-64. doi: 10.1016/j.taap.2015.12.027 [63] HE X, WU C Y, CUI Y H, et al. The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell[J]. Oncotarget, 2017, 8(59): 100128-100140. doi: 10.18632/oncotarget.22044 [64] JIANG J, YE W, LIN Y C. Gossypol inhibits the growth of MAT-LyLu prostate cancer cells by modulation of TGFβ/Akt signaling[J]. Int J Mol Med, 2009, 24(1): 69-75. [65] ZHANG M C, LIU H P, GUO R B, et al. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells[J]. Biochem Pharmacol, 2003, 66(1): 93-103. doi: 10.1016/S0006-2952(03)00248-X [66] LIU Y L, LU Q S, XI L W, et al. Effects of replacement of dietary fishmeal by cottonseed protein concentrate on growth performance, liver health, and intestinal histology of largemouth bass (Micropterus salmoides)[J]. Front Physiol, 2021, 12: 2308. [67] BIAN F, ZHOU H G, WANG C, et al. Effects of replacing fishmeal with different cottonseed meals on growth, feed utilization, haematological indexes, intestinal and liver morphology of juvenile turbot (Scophthalmus maximus L.)[J]. Aquac Nutr, 2017, 23(6): 1429-1439. doi: 10.1111/anu.12518 [68] TRIPATHI A, DEBELIUS J, BRENNER D A, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. doi: 10.1038/s41575-018-0011-z -