Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus
-
摘要: 为研究半胱氨酸对低鱼粉引起的卵形鲳鲹 (Trachinotus ovatus) 幼鱼 [(10.05 ± 0.05) g] 代谢紊乱的影响,采用动植物蛋白 (鸡粉、大豆浓缩蛋白、发酵豆粕等) 部分替代鱼粉制作卵形鲳鲹基础饮食,分别添加0 (C0组,对照组)、0.30% (C1组)、0.60% (C2组)、0.90% (C3组) 和1.20% (C4组) 半胱氨酸制成5种等氮等脂饲料。56 d的饲养实验结果显示:1) 半胱氨酸通过激活S6K/PI3K/TOR/4E-BP1通路,提高卵形鲳鲹蛋白质合成代谢能力。补充0.6%~0.9%半胱氨酸通过上调肌肉核糖体蛋白S6激酶 (S6K)、雷帕霉素靶蛋白 (TOR)、磷脂酰肌醇-3-激酶 (PI3K)和4E结合蛋白1 (4E-BP1) 基因的mRNA水平,增加肌肉和血清总蛋白 (Total protein, TP) 含量与肌肉粗蛋白含量,降低血氨 (Serum ammonia, SA) 、肌肉和肝脏尿素氮 (Urea nitrogen, UN) 含量,促进肌肉蛋白质沉积。2) 补充0.6%~0.9%半胱氨酸通过下调肌肉中过氧化物酶体增殖物激活受体γ (PPARγ) 基因的mRNA水平,降低乙酰辅酶A羧化酶 (ACC)、脂肪酸合成酶 (FAS) 基因的mRNA水平与酶活水平,抑制脂肪合成代谢;同时,上调肌肉中过氧化物酶体增殖物激活受体α (PPARα) 基因的表达水平,使激素敏感性脂肪酶 (HSL) 和肉毒碱棕榈酰转移酶1 (CPT1) 基因高表达并伴随酶活提高,进而促进肌肉中脂肪酸β氧化反应,减少蛋白质因分解供能所带来的消耗,促进肌肉中蛋白质沉积。Abstract: To investigate the effect of cysteine on the metabolic disorders of juvenile Trachinotus ovatus (10.05 ± 0.05) g caused by low fishmeal, we prepared a basal pomfret diet by using plant and animal proteins (Chicken meal, soybean protein concentrate, fermented soybean meal, etc.) as partial substitutes for fishmeal, and then added 0 (Group C0, control group), 0.30% (Group C1), 0.60% (Group C2), 0.90% (Group C3) and 1.20% (Group C4) cysteine to make five isonitrogenous and isoenergetic diets. The results of a 56-day feeding trial show that: 1) Cysteine enhanced protein anabolism in T. ovatus by activating the S6K/PI3K/TOR/4E-BP1 pathway. Supplementation with 0.6%−0.9% cysteine up-regulated the mRNA levels of ribosomal protein S6 kinase (S6K), target of rapamycin (TOR), phosphoinositide 3-kinase (PI3K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in muscle, increased total protein (TP) in muscle and serum as well as muscle crude protein content, reduced serum ammonia (SA) and urea nitrogen (UN) in muscle and liver, promoting protein deposition in muscle. 2) Supplementation with 0.6%−0.9% cysteine inhibited lipid anabolism by down-regulating the expression level of peroxisome proliferator-activated receptors gamma (PPARγ) in muscle, decreasing the transcript level and enzyme activity level of Acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS), while it up-regulated the expression level of peroxisome proliferator activated receptors-alpha (PPARα) in muscle, resulting in high hormone-sensitive lipase (HSL) and carnitine palmitoyl transferase 1 (CPT1) expression with increased enzyme activity, which in turn promoted β-oxidation of fatty acids in muscle, reducing protein consumption due to catabolism for energy supply. Thus, protein deposition in muscle is promoted.
-
Key words:
- Trachinotus ovatus /
- Cysteine /
- Lipid metabolism /
- Protein metabolism /
- Fishmeal replacement
-
表 1 实验日粮配方和营养水平 (以干物质百分比为基础)
Table 1. Formulation and nutrition level of the experimental diets (Dry matter basis)
% 参数Parameter 半胱氨酸添加量 Added amount of cysteine C0 (0) C1 (0.3%) C2 (0.6%) C3 (0.9%) C4 (1.2%) 鱼粉 Fishmeala 20.00 20.00 20.00 20.00 20.00 鸡肉粉 Chicken meala 10.00 10.00 10.00 10.00 10.00 大豆浓缩蛋白 Soy protein concentratea 10.00 10.00 10.00 10.00 10.00 鱿鱼膏 Squid paste 5.00 5.00 5.00 5.00 5.00 豆粕 Soybean meala 12.00 12.00 12.00 12.00 12.00 发酵豆粕 Fermented soybean meala 5.00 5.00 5.00 5.00 5.00 玉米蛋白粉 Corn gluten meala 6.00 6.00 6.00 6.00 6.00 高筋面粉 High gluten floura 18.37 18.07 17.77 17.47 17.17 鱼油 Fish oila 6.00 6.00 6.00 6.00 6.00 豆油 Soybean oila 3.00 3.00 3.00 3.00 3.00 磷酸二氢钙 Ca(H2PO4)2a 1.50 1.50 1.50 1.50 1.50 氯化胆碱 Choline chloridea 0.30 0.30 0.30 0.30 0.30 维生素预混 Vitamin mix a,b 1.00 1.00 1.00 1.00 1.00 矿物质预混 Mineral mix a,c 1.00 1.00 1.00 1.00 1.00 L-赖氨酸盐酸盐 L-lysine monohydrochloridea 0.50 0.50 0.50 0.50 0.50 DL-蛋氨酸 DL-Methioninea 0.20 0.20 0.20 0.20 0.20 苏氨酸 Threoninea 0.10 0.10 0.10 0.10 0.10 乙氧喹 Ethoxyquina 0.03 0.03 0.03 0.03 0.03 半胱氨酸 Cysteinea 0.00 0.30 0.60 0.90 1.20 营养水平 Nutrition levelc 粗蛋白 Crude Protein (%, dry matter) 42.79 42.74 42.69 42.63 42.58 粗脂肪 Crude Lipid (%, dry matter) 13.42 13.40 13.38 13.37 13.35 水分 Moisture (%, dry matter) 10.15 10.76 11.24 10.98 11.32 灰分 Ash (%, dry matter) 8.53 8.65 8.33 8.71 8.39 半胱氨酸 Cysteine 0.52 0.82 1.13 1.45 1.84 注:a. 维生素预混料提供以下 (每千克):维生素 A 8×106 IU,维生素 D3 2×106 IU,维生素 E 40 000 mg,维生素 B 17 000 mg,维生素 B6 12 000 mg,维生素 B12 100 mg,维生素 K3 10 000 mg,D-泛酸 35 000 mg,叶酸 1 000 mg,烟酰胺 90 000 mg,生物素 200 mg,肌醇 80 000 mg. b. 矿物混合物提供以下 (每千克):铁 10 000 mg,铜 1 200 mg,锌 7 000 mg,锰 5 500 mg,钴 250 mg,碘 250 mg,硒 50 mg,钾 60 000 mg,钠 24 000 mg,镁 60 000 mg;c. 营养水平为实测值。 Note: a. Vitamin mix provides the following (Per kilogram content): vitamin A 8×106 IU, vitamin D3 2×106 IU, vitamin E 40 000 mg, vitamin B 17 000 mg, vitamin B6 12 000 mg, vitamin B12 100 mg, vitamin K3 10 000 mg, D-pantothenic acid 35 000 mg, folic acid 1 000 mg, nicotinamide 90 000 mg, Biotin 200 mg, inositol 80 000 mg. b. Mineral provides the following (Per kilogram content): Fe 10 000 mg, Cu 1 200 mg, Zn 7 000 mg, Mn 5 500 mg, Co 250 mg, I2 250 mg, Se 50 mg, K 60 000 mg, Na 24 000 mg, Mg 60 000 mg; c. Nutrition level is measured. 表 2 每100 g实验日粮的氨基酸组成
Table 2. Amino acid composition of per 100 g experimental diets g
氨基酸
Amino acid半胱氨酸添加量
Added amount of cysteineC0 (0) C1 (0.3%) C2 (0.6%) C3 (0.9%) C4 (1.2%) 天冬氨酸 Aspartic acid 4.35 4.39 4.24 4.31 4.45 苏氨酸 Threonine 1.90 2.02 2.11 1.91 2.02 丝氨酸 Serine 2.04 2.05 2.04 2.12 2.05 谷氨酸 Glutamic acid 8.41 8.66 8.69 8.36 8.62 甘氨酸 Glycine 3.04 3.10 3.02 2.98 3.08 丙氨酸 Alanine 3.06 3.09 3.06 2.95 3.07 脯氨酸 Proline 3.21 3.13 3.04 3.16 3.13 缬氨酸 Valine 2.13 2.11 2.07 2.12 2.11 蛋氨酸 Methionine 1.18 1.15 1.12 1.31 1.12 异亮氨酸 Isoleucine 1.77 1.84 1.84 1.82 1.80 亮氨酸 Leucine 4.42 4.50 4.42 4.41 4.39 酪氨酸 Tyrosine 1.27 1.30 1.31 1.29 1.22 苯丙氨酸 Phenylalanine 2.24 2.32 2.25 2.37 2.25 赖氨酸 Lysine 3.54 3.43 3.50 3.54 3.50 组氨酸 Histidine 1.11 1.13 1.12 1.07 1.15 精氨酸 Arginine 3.15 3.10 3.14 3.15 3.11 半胱氨酸 Cysteine 0.52 0.82 1.13 1.45 1.84 表 3 qPCR引物序列
Table 3. qPCR primer sequences
引物Primer 引物序列 (5'—3')Primer sequence (5'–3') 来源Source FAS-F GATGGATACAAAGAGCAAGG [19] FAS-R GTGGAGCCGATAAGAAGA PPARγ-F TCAGGGTTTCACTATGGCGT [19] PPARγ-R CTGGAAGCGACAGTATTGGC ACC-F GTTGTCAATCCCAGCCGATC [19] ACC-R ATCCACAATGTAGGCCCCAA PPARα-F AATCTCAGCGTGTCGTCTT [19] PPARα-R GGAAATGCTTCGGATACTTG CPT1-F CTTTAGCCAAGCCCTTCATC [19] CPT1-R CACGGTTACCTGTTCCCTCT HSL-F TCATACCTCCACACCAACCC [19] HSL-R GTCTCGCAGTTTCTTGGCAA PI3K-F AACGGCAAGAGCAAGAAGGGC [20] PI3K-R CTATGGGCAGGCAGAGGAGGG 4E-BP1-F ACACCCCAGCAGGAACTTT [19] 4E-BP1-R GTGACCATCAACGACGCAG TOR-F GGGTCTTATGAGCCAGTGCCAGG [19] TOR-R CTTCAGGGTTGTCAGCGGATTGT S6K-F GCTGGCTGGCTTTACTCCATTTG [20] S6K-R CCTGCCTAGCAGTCAGTCTCTGA EF-1α-F AAGCCAGGTATGGTTGTCAACTTT [21] EF-1α-R CGTGGTGCATCTCCACAGACT 表 4 每100 g全鱼常规营养组成
Table 4. Per 100 g whole fish conventional nutritional composition
g 成分
Component半胱氨酸添加量
Added amount of cysteineC0 (0) C1 (0.3%) C2 (0.6%) C3 (0.9%) C4 (1.2%) 粗蛋白 Crude protein 15.27±0.32a 16.40±0.41ab 17.80±0.50bc 18.13±0.81c 16.83±0.58bc 粗脂肪 Crude lipid 6.77±0.35 7.13±0.21 6.60±0.30 6.63±0.15 6.43±0.35 水分 Moisture 69.10±0.26a 71.23±0.15b 71.33±0.98bc 71.30±0.87bc 72.93±0.42c 灰分 Ash 3.07±0.06 3.10±0.10 3.13±0.06 3.07±0.06 3.07±0.06 注:同行数据不同字母上标表示差异显著 (P<0.05)。 Note: Values with different superscript letters within the same line are significantly different (P<0.05). -
[1] 李宁宇, 刘利平, 华雪铭, 等. 豆粕影响日本鳗鲡黑仔鳗饲料中发酵豆粕对鱼粉的替代效果: 生长、抗氧化能力以及生化指标[J]. 海洋渔业, 2020, 42(3): 352-364. doi: 10.3969/j.issn.1004-2490.2020.03.011 [2] 冯建, 王萍, 何娇娇, 等. 发酵豆粕替代鱼粉对大黄鱼幼鱼生长性能、体成分、血清生化指标及肝脏组织形态的影响[J]. 动物营养学报, 2016, 28(11): 3493-3502. doi: 10.3969/j.issn.1006-267x.2016.11.016 [3] GUIMARÃES I G, PEZZATO L E, BARROS M M. Amino acid availability and protein digestibility of several protein sources for Nile tilapia, Oreochromis niloticus[J]. Aquac Nutr, 2008, 14(5): 396-404. doi: 10.1111/j.1365-2095.2007.00540.x [4] 崔锡帅. 鸡肉粉、黑水虻幼虫粉和乙醇梭菌蛋白替代鱼粉对暗纹东方鲀生长性能、蛋白代谢及相关基因表达的影响[D]. 上海: 上海海洋大学, 2022: 25. [5] XIE S C, ZHOU Q C, ZHANG X S, et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus)[J]. Aquaculture, 2022, 549: 737820. doi: 10.1016/j.aquaculture.2021.737820 [6] HE Y F, CHI S Y, TAN B P, et al. dl-Methionine supplementation in a low-fishmeal diet affects the TOR/S6K pathway by stimulating ASCT2 amino acid transporter and insulin-like growth factor-I in the dorsal muscle of juvenile cobia (Rachycentron canadum)[J]. Brit J Nutr, 2019, 122(7): 734-744. doi: 10.1017/S0007114519001648 [7] de MOURA L B, DIÓGENES A F, CAMPELO D A V, et al. Nutrient digestibility, digestive enzymes activity, bile drainage alterations and plasma metabolites of meagre (Argyrosomus regius) feed high plant protein diets supplemented with taurine and methionine[J]. Aquaculture, 2019, 511(15): 734231. [8] LI S H, LUO X, LIAO Z B, et al. Additional supplementation of sulfur-containing amino acids in the diets improves the intestinal health of turbot fed high-lipid diets[J]. Fish Shellfish Immun, 2022, 130: 368-379. doi: 10.1016/j.fsi.2022.09.015 [9] RICHARD N, COLEN R, ARAGÃO C. Supplementing taurine to plant-based diets improves lipid digestive capacity and amino acid retention of Senegalese sole (Solea senegalensis) juveniles[J]. Aquaculture, 2017, 468(1): 94-101. [10] ESPE M, RUOHONEN K, EL-MOWAFI A. Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmo salar)[J]. Aquac Res, 2012, 43(3): 349-360. doi: 10.1111/j.1365-2109.2011.02837.x [11] LIU J X, ZHU K C, GUO H Y, et al. Effects of cysteine addition to low-fishmeal diets on the growth, anti-oxidative stress, intestine immunity, and Streptococcus agalactiae resistance in juvenile golden pompano (Trachinotus ovatus)[J]. Front Immunol, 2022, 13: 1066936. doi: 10.3389/fimmu.2022.1066936 [12] ELAHI U, WANG J, MA Y B, et al. The response of broiler chickens to dietary soybean meal reduction with glycine and cysteine inclusion at marginal sulfur amino acids (SAA) deficiency[J]. Animals, 2020, 10(9): 1686. doi: 10.3390/ani10091686 [13] CANDEBAT C L, STEPHENS F, BOOTH M A, et al. Adequate levels of dietary sulphur amino acids impart improved liver and gut health in juvenile yellowtail kingfish (Seriola lalandi)[J]. Brit J Nutr, 2022, 129(8): 1289-1312. [14] NORDRUM S, KROGDAHL Å, RØSJØ C, et al. Effects of methionine, cysteine and medium chain triglycerides on nutrient digestibility, absorption of amino acids along the intestinal tract and nutrient retention in Atlantic salmon (Salmo salar L. ) under pair-feeding regime[J]. Aquaculture, 2000, 186(3): 341-360. [15] GAO J, LIU M J, GUO H Y, et al. ROS Induced by Streptococcus agalactiae activate inflammatory responses via the TNF-α/NF-κB signaling pathway in golden pompano Trachinotus ovatus (Linnaeus, 1758)[J]. Antioxidants, 2022, 11(9): 1809. doi: 10.3390/antiox11091809 [16] LIU J X, GUO H Y, ZHU K C, et al. Effects of exogenous taurine supplementation on the growth, antioxidant capacity, intestine immunity, and resistance against Streptococcus agalactiae in juvenile golden pompano (Trachinotus ovatus) fed with a low-fishmeal diet[J]. Front Immunol, 2022, 13: 1036821. doi: 10.3389/fimmu.2022.1036821 [17] LIU M J, GUO H Y, ZHU K C, et al. Effects of acute ammonia exposure and recovery on the antioxidant response and expression of genes in the Nrf2-Keap1 signaling pathway in the juvenile golden pompano (Trachinotus ovatus)[J]. Aquat Toxicol, 2021, 240: 105969. doi: 10.1016/j.aquatox.2021.105969 [18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262 [19] QIN Y W, HE C Q, GENG H Y, et al. Muscle nutritive metabolism changes after dietary fishmeal replaced by cottonseed meal in golden pompano (Trachinotus ovatus)[J]. Metabolites, 2022, 12(7): 576. doi: 10.3390/metabo12070576 [20] ZHOU C P, HUANG Z, LIN H Z, et al. Effects of dietary leucine on glucose metabolism, lipogenesis and insulin pathway in juvenile golden pompano Trachinotus ovatus[J]. Aquac Rep, 2021, 19: 100626. doi: 10.1016/j.aqrep.2021.100626 [21] LIU M J, GUO H Y, LIU B, et al. Gill oxidative damage caused by acute ammonia stress was reduced through the HIF-1α/NF-κb signaling pathway in golden pompano (Trachinotus ovatus)[J]. Ecotox Environ Safe, 2021, 222: 112504. doi: 10.1016/j.ecoenv.2021.112504 [22] MÉTAYER S, SEILIEZ I, COLLIN A, et al. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status[J]. J Nutr Biochem, 2008, 19(4): 207-215. doi: 10.1016/j.jnutbio.2007.05.006 [23] ZHANG H, LUO Y, LU D L, et al. Diacylglycerol oil reduces fat accumulation and increases protein content by inducing lipid catabolism and protein metabolism in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2019, 510: 90-99. doi: 10.1016/j.aquaculture.2019.05.035 [24] TONG S L, WANG L, KALHORO H, et al. Effects of supplementing taurine in all-plant protein diets on growth performance, serum parameters, and cholesterol 7α-hydroxylase gene expression in black sea bream, Acanthopagrus schlegelii[J]. J World Aquac Soc, 2020, 51(4): 990-1001. doi: 10.1111/jwas.12611 [25] EL DALY E S. Protective effect of cysteine and vitamin E, Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in rats[J]. J Pharm Belg, 1998, 53(2): 87-93. [26] DONATO D C Z, SAKOMURA N K, SILVA E P, et al. Manipulation of dietary methionine+cysteine and threonine in broilers significantly decreases environmental nitrogen excretion[J]. Animal, 2016, 10(6): 903-910. doi: 10.1017/S175173111500289X [27] 周乐, 常晨城, 王宇, 等. PI3K/Akt/mTOR信号通路调控牛细胞生长作用的研究进展[J]. 饲料研究, 2022, 45(9): 138-142. [28] 徐稳. 日粮补充亮氨酸调控IUGR仔猪蛋白质代谢及胰岛素信号通路相关基因的机制研究[D]. 南京: 南京农业大学, 2017: 69. [29] 冯文荣, 冯伟, 张明胤, 等. 中华绒螯蟹4E-BP1基因的克隆、表达特征及其在蜕壳中的作用[J]. 中国水产科学, 2022, 29(12): 1714-1727. [30] TIAN S J, WU Y, YUAN J, et al. Replacement of dietary fishmeal by cottonseed protein concentrate on growth performance, feed utilization and protein metabolism of large yellow croaker Larimichthys crocea[J]. Aquacult Rep, 2022, 26: 101313. [31] HAO Q, WANG L L, ZHANG M H, et al. Taurine stimulates protein synthesis and proliferation of C2C12 myoblast cells through the PI3K-ARID4B-mTOR pathway[J]. Brit J Nutr, 2021, 128(10): 1-12. [32] SHI X C, JIN A, SUN J, et al. The protein-sparing effect of α-lipoic acid in juvenile grass carp, Ctenopharyngodon idellus: effects on lipolysis, fatty acid β-oxidation and protein synthesis[J]. Brit J Nutr, 2018, 120(9): 977-987. doi: 10.1017/S000711451800226X [33] WOLBER F M, MCGRATH M, JACKSON F, et al. Cysteic acid in dietary keratin is metabolized to glutathione and liver taurine in a rat model of human digestion[J]. Nutrients, 2016, 8(2): 104. doi: 10.3390/nu8020104 [34] LIU X, DENG H Y, XU Q Q, et al. Effects of tea tree essential oil supplementation in low fish meal diet on growth, lipid metabolism, anti-oxidant capacity and immunity of largemouth bass (Micropterus salmoides)[J]. Aquac Rep, 2022, 27: 101380. doi: 10.1016/j.aqrep.2022.101380 [35] 史晓晨. 硫辛酸对草鱼脂质代谢、蛋白质代谢及其抗氧化能力影响的研究[D]. 咸阳: 西北林科技大学, 2018: 45. [36] 张幸开. 维生素A对肉牛肌内脂肪沉积及ACC/HSL、PPARγ基因表达的影响[D]. 咸阳: 西北农林科技大学, 2005: 35-45. [37] WANG X X, BAI F K, NIU X J, et al. The lipid-lowering effect of dietary taurine in orange-spotted groupers (Epinephelus coioides) involves both bile acids and lipid metabolism[J]. Front Mar Sci, 2022, 9: 859428. doi: 10.3389/fmars.2022.859428 [38] HAJ-YASEIN N N, BERG O, JERNERÉN F, et al. Cysteine deprivation prevents induction of peroxisome proliferator-activated receptor gamma-2 and adipose differentiation of 3T3-L1 cells[J]. BBA-Mol Cell Biol L, 2017, 1862(6): 623-635. [39] 郭亚男, 杨茹艳, 张芷毓, 等. Mstn基因干扰通过上调基因Cpt1b促进肌间脂肪的β氧化[J]. 生物工程学报, 2022, 38(8): 3076-3089. [40] SHEN J, SUN B F, YU C, et al. Choline and methionine regulate lipid metabolism via the AMPK signaling pathway in hepatocytes exposed to high concentrations of nonesterified fatty acids[J]. J Cell Biochem, 2020, 121(8/9): 3667-3678. -