Pollution analysis and dietary exposure risk assessment of lipophilic toxins in shellfish from Beibu Gulf seafood market in Guangxi Province
-
摘要: 脂溶性贝类毒素分布广泛,可通过食物链传递,对消费者健康构成巨大威胁。广西北部湾海域是我国重要的海水养殖区,其贝类产量占比超过一半。为评估广西北部湾沿海居民因摄食贝类而引起的脂溶性贝类毒素摄入风险,并为建立毒素限量标准提供科学依据,采用液相色谱串联质谱法 (LC-MS/MS) 分析脂溶性贝类毒素含量,24 h 膳食回顾法调查居民连续7 d的海产品进食情况,应用海洋生物毒素点评估方法,计算膳食中每日毒素摄入量 (Estimated daily intake, ESI),对照欧洲食品安全局推荐的急性参考剂量 (Acute reference dose, ARfD) 值,评价其食用安全性。结果显示:检出的4种毒素含量均低于欧盟规定的安全限量值。检出率由高到低依次为环亚胺类毒素 (Gymnodimine, GYM)(83.02%)、大田软海绵酸 (Okadaic acid, OA)(51.16%)、鳍藻毒素 (Dinophysis toxin, DTX-2)(40.91%) 和虾夷扇贝毒素 (Homo-yessotoxin, Homo-YTX)(8.6%),检出的最高质量分数分别为105.4、31.39、38.19和159.66 μg·kg−1;毒素含量存在季节和物种差异,牡蛎秋季GYM含量最高,冬季OA含量最高。DTX-2更易在秋冬季样品中检出,Homo-YTX仅在夏秋季扇贝和贻贝样品中检出。膳食调查结果显示当地居民贝肉日平均消费量为45 g·d−1。以当地居民贝肉食用量和人体质量估算,OA组毒素ESI值为0.26 μg·(kg·d)−1,小于欧盟规定的ARfD值 [0.3 μg·(kg·d)−1]。但若以欧盟提供的贝肉食用量和人体质量数据估算,ESI值 [0.34 μg·(kg·d)−1] 则高于ARfD值。研究表明,虽然广西北部湾沿海市售贝类产品中脂溶性贝类毒素检出值低于欧盟规定的安全限量值,但当地居民存在OA组毒素膳食暴露风险。Abstract: Lipophilic shellfish toxins are widely distributed and will be transmitted to consumers through the food chain, posing a great threat to human health. The Beibu Gulf in Guangxi Province is an important mariculture area in China, accounting for more than half of the national output. To estimate the potential dietary exposure risk of coastal residents in that area, and to provide a scientific basis for the establishment of toxin limit standards, we analyzed the contents of lipophilic shellfish toxins by liquid chromatography tandem mass spectrometry. We have used a 24-hour dietary review method to investigate the consumption of marine products by coastal residents for seven consecutive days. Then we calculated the value of estimated daily intake (ESI) of toxins in the diet by using the marine biological toxin point assessment method, and evaluated the edible safety by comparing with the acute reference dose (ARfD) recommended by the European Food Safety Agency. The proportion of samples contaminated with toxins followed a descending order of gyrodimine (GYM) (83.02%), okadaic acid (OA) (51.16%), dinophysis toxin (DTX-2)(40.91%) and homo-yessotoxin (Homo-YTX) (8.6%), with the peak values of 105.4, 31.39, 38.19 and 159.6 µg·kg−1, respectively. The concentrations of toxins varied with different seasons and species. Among the six kinds of shellfish, the highest contents of OA and GYM were found in oyster samples, and the peak values were found in winter and autumn samples, respectively. The contents of DTX-2 in autumn and winter samples were significantly higher than those in spring and summer samples. Homo-YTX was only detected in scallop and mussel samples in summer and autumn. Dietary survey shows that the average daily shellfish consumption of coastal residents in Beibu Gulf was 45 g·d−1. The ESI value in OA toxin was estimated to be 0.26 μg·(kg·d)−1 based on the shellfish consumption and body masses of local residents, less than the ARfD value [0.3 μg·(kg·d)−1] set by the European Union (EU). However, based on the shellfish consumption and body masses of local residents provided by the EU, the ESI value [0.34 μg·(kg·d)−1] was higher than the ARfD value. The results suggest that although the detection rate of lipophilic shellfish toxin in shellfish samples was lower than the safe limit value set by the EU, there is a risk of dietary exposure to OA toxin for the Beibu Gulf residents.
-
表 1 9 种脂溶性贝类毒素检测参数
Table 1. Detection parameters of nine lipophilic shellfish toxins
毒素
Toxin电离模式
ESI mode母离子
Precursor ion/(m/z)子离子
Product ion/(m/z)碰撞电压
Collision energy/eV大田软海绵酸
OA[M+H]− 803.4 255, 563.2 −65, −55 鳍藻毒素1
DTX-1[M+H]− 817.5 255.1, 113.1 −65, −100 鳍藻毒素2
DTX-2[M+H]− 803.5 255.1, 563.2 −65, −55 虾夷扇贝毒素
YTX[M+H]− 1 141.5 1 061.5, 855.5 −65, −50 Homo-虾夷扇贝毒素
Homo-YTX[M+H]− 1 155.5 1 075.5, 869.5 −65, −50 环亚胺毒素
GYM[M+H]+ 508.3 174.3, 490.3 50, 35 螺环内酯毒素
SPX1[M+H]+ 692.5 444.4, 674.4 45, 45 原多甲藻酸1
AZA1[M+H]+ 842.5 806.5, 824.5 40, 50 原多甲藻酸3
AZA3[M+H]+ 828.5 810.4, 792.5 40, 50 表 2 贝中脂溶性贝类毒素检出率及含量
Table 2. Detection rates and contents of lipophilic shellfish toxins in shellfish samples
脂溶性贝类毒素
Lipophilic shellfish
toxin检出值范围
Detection range/
(μg·kg−1)平均检出值
Mean/
(μg·kg−1)检出率
Detection
rate/%环亚胺毒素
GYM0.12~105.54 33.1 83.02 螺环内酯毒素
SPX1ND ND ND 大田软海绵酸
OA0.34~31.39 7.97 51.16 鳍藻毒素1
DTX-1ND ND ND 鳍藻毒素2
DTX-20.29~38.19 7.65 40.91 原多甲藻酸1
AZA1ND ND ND 原多甲藻酸3
AZA3ND ND ND 虾夷扇贝毒素
YTXND ND ND Homo-虾夷扇贝毒素
Homo-YTX3.83~159.66 47.97 8.60 注:ND表示未检出。 Note: ND. Not detected. 表 3 脂溶性贝类毒素的毒性等效因子与急性参考值
Table 3. Toxic equivalent factors and ARfD of some shellfish toxins
表 4 广西北部湾沿海居民脂溶性贝类毒素急性暴露评估
Table 4. Acute dietary exposure to some shellfish toxins of residents in Beibu Gulf in Guangxi Province
毒素
Toxin贝肉日P99消费量
P99 daily shellfish
consumption/g毒素检出的最大值
Maximum toxin detection
value/(μg·kg−1)每日摄入量
ESI/[μg·(kg·d)−1]急性参考剂量
ARfD/[μg·(kg·d)−1]第一组
First group第二组
Second group大田软海绵酸
OA205 31.39 0.26 0.34 0.3 38.19 虾夷扇贝毒素
YTX159.66 0.60 1.06 25 表 5 广西北部湾沿海居民脂溶性贝类毒素慢性暴露评估
Table 5. Chronic dietary exposure to some shellfish toxins of residents in Beibu Gulf in Guangxi Province
毒素
Toxin贝肉日均消费
Daily shellfish
consumption/g毒素检出的均值
Mean toxin detection
value/(μg·kg−1)贝肉日P99消费量
P99 daily shellfish
consumption/g每日摄入量
ESI/[μg·(kg·d)−1]第一组
First group第二组
Second group大田软海绵酸
OA45 7.97 205 6.58×10−3 0.03 鳍藻毒素2
DTX-27.65 3.79×10−3 0.017 Homo-虾夷扇贝毒素
Homo-YTX47.97 0.04 0.18 -
[1] KONOKI K, ONODA T, WATANBE R, et al. In vitro acylation of okadaic acid in the presence of various bivalves' extracts[J]. Mar Drugs, 2013, 11(2): 300-315. [2] 王亚军, 余新威, 方力, 等. 营养环境对微小亚历山大藻C4生长和产毒的影响[J]. 水产学报, 2017, 41(10): 1588-1598. [3] VALDIGLESIAS V, PREGO-FARALDO M V, PÁSARO E, et al. Okadaic acid: more than a diarrheic toxin[J]. Mar Drugs, 2013, 11(11): 4328-4349. doi: 10.3390/md11114328 [4] MARTELLI F, CIRLINI M, DELLAFIORA L, et al. Mitigation of marine toxins by interactions with bacteria: the case of okadaic acid and tetrodotoxin[J]. Food Control, 2021(1): 108428. [5] AUNE T, ESPENES A, AASEN J, et al. Study of possible combined toxic effects of azaspiracid-1 and okadaic acid in mice via the oral route[J]. Toxicon, 2012, 60(5): 895-906. doi: 10.1016/j.toxicon.2012.06.007 [6] EFSA. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on marine biotoxins in shellfish-pectenotoxin group[J]. EFSA J, 2009, 1109: 1-47. [7] BLAANCO J, ARÉVALO F, CORREA J, et al. Effect of the industrial steaming on the toxicity, estimated by LC-MS/MS, of mussels exposed for a long time to diarrhetic shellfish poisoning (DSP) toxins[J]. Food Chem, 2015, 177: 240-247. doi: 10.1016/j.foodchem.2015.01.012 [8] OTERO A, CHAPELA M J, ATANASSOVA M, et al. Cyclic imines: chemistry and mechanism of action: a review[J]. Chem Res Toxicol, 2011, 24(11): 1817-1829. doi: 10.1021/tx200182m [9] EFSA. Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commission on marine biotoxins in shellfish-yessotoxin group[J]. EFSA J, 2008, 907: 1-62. [10] EFSA panel on contaminants in the food chain (CONTAM). Scientific opinion on marine biotoxins in shellfish-cyclic imines (spirolides, gymnodimines, pinnatoxins and pteriatoxins)[J]. EFSA J, 2010, 8(6): 1628. [11] 徐轶肖, 韦光领, 王玉, 等. 钦州湾海水和香港牡蛎体内脂溶性贝类毒素污染特征[J]. 海洋与湖沼, 2021, 52(1): 144-152. doi: 10.11693/hyhz20200400126 [12] 柳阳, 郭伟, 黎全江, 等. 广西北部湾近江牡蛎脂溶性藻毒素污染状况与安全风险评价[J]. 南方水产科学, 2020, 16(4): 108-113. doi: 10.12131/20190212 [13] JI Y, YAN G W, WANG G X, et al. Prevalence and distribution of domoic acid and cyclici mines in bivalve mollusks from Beibu Gulf, China[J]. J Hazard Mater, 2022, 423: 127078. doi: 10.1016/j.jhazmat.2021.127078 [14] WANG Z, DOUCETTE G J. Determination of lipophilic marine biotoxins by liquid chromatography-tandem mass spectrometry in five shellfish species from Washington State, USA[J]. J Chromatogr A, 2021, 1639: 461902. doi: 10.1016/j.chroma.2021.461902 [15] ROURKE W A, JUSTASON A, MARTIN J L, et al. Shellfish toxin uptake and depuration in multiple Atlantic Canadian mollusca species: application to selection of sentinel species in monitoring programs[J]. Toxins, 2021, 13(2): 168. doi: 10.3390/toxins13020168 [16] ZHENG R J, LIN S E, YANG Y, et al. Variability and profiles of lipophilic marine toxins in shellfish from southeastern China in 2017−2020[J]. Toxicon, 2021, 201: 37-45. doi: 10.1016/j.toxicon.2021.08.009 [17] CHEN X, HUANG B Q, ZHAO Q H, et al. Shellfish contamination with lipophilic toxins and dietary exposure assessments from consumption of shellfish products in Shenzhen, China[J]. Ecotoxicol Environ Saf, 2021, 221: 112446. doi: 10.1016/j.ecoenv.2021.112446 [18] 海洋讯. 自然资源部发布2021年度《中国海洋灾害公报》[J]. 自然资源通讯, 2022(10): 39-55. [19] MARTINS J C, DOMÍNGUEZ-PÉREZ D, AZEVEDO C B, et al. Molecular responses of mussel Mytilus galloprovincialis associated to accumulation and depuration of marine biotoxins okadaic acid and dinophysistoxin-1 revealed by shotgun proteomics[J]. Front Mar Sci, 2020, 7: 589822. doi: 10.3389/fmars.2020.589822 [20] 刘红河, 秦逍云, 廖仕成, 等. 超高效液相色谱-四极杆串联线性离子阱质谱法测定贝类中的脂溶性贝类毒素[J]. 卫生研究, 2021, 50(6): 967-974. [21] QIU J B, CHEN H D, JI Y, et al. Evaluation of different strategies to minimize thematrix effects on LC-MS/MS analysis of multiple lipophilic shellfish toxins in both acidic and alkaline chromatographic conditions[J]. Toxicon, 2020, 188: 16-26. doi: 10.1016/j.toxicon.2020.10.002 [22] 赵丽云, 马冠生, 朴建华, 等. 2010-2012中国居民营养与健康状况监测总体方案[J]. 中华预防医学杂志, 2016, 50(3): 204-207. [23] TWINER M J, El-ADKI R, KILCOYNE J, et al. Comparative effects of the marine algal toxins azaspiracid-1, -2, and -3 on Jurkat T lymphocyte cells[J]. Chem Res Toxicol, 2012, 25(3): 747-754. doi: 10.1021/tx200553p [24] ALVES R N, RAMBLA-ALEGRE M, BRAGA A C, et al. Bioaccessibility of lipophilic and hydrophilic marine biotoxins in seafood: an in vitro digestion approach[J]. Food Chem Toxicol, 2019, 129: 153-161. doi: 10.1016/j.fct.2019.04.041 [25] EFSA. Scientific opinion of the panel on contaminants in the food chain on a request from the European commission on marine biotoxins in shellfish-summary on regulated marine biotoxins[J]. EFSA J, 2009, 1306: 1-23. [26] 白志毅, 温鹏超, 袁立, 等. 我国淡水贝类种质资源现状与保护利用[J]. 水产学报, 2022, 46(1): 149-157. [27] 丁剑楠, 张闪闪, 武旭跃, 等. 太湖贡湖湾水体中微囊藻毒素的时空分布及健康风险评估[J]. 生态环境学报, 2018, 27(11): 2095-2101. [28] CHEN J H, HAN T Z, LI X T, et al. Occurrence and distribution of marine natural organic pollutants: lipophilic marine algal toxins in the Yellow Sea and the Bohai Sea, China[J]. Sci Total Environ, 2018, 612: 931-939. doi: 10.1016/j.scitotenv.2017.08.304 [29] 查道军, 李嫒芳, 丁任业, 等. 大亚湾大鹏澳海域贝类和浮游植物中脂溶性毒素及软骨藻酸研究[J]. 海洋环境科学, 2022, 41(5): 753-760. doi: 10.13634/j.cnki.mes.2022.05.016 [30] WU H Y, YAO J H, GUO M M, et al. Distribution of marine lipophilic toxins in shellfish products collected from the Chinese market[J]. Mar Drugs, 2015, 13(7): 4281-4295. doi: 10.3390/md13074281 [31] 韩蕾, 赵芮, 刘昭, 等. 大田软海绵酸和鳍藻毒素时间分辨荧光免疫层析试纸条的研制与应用[J]. 海洋环境科学, 2022, 41(5): 783-790. [32] 郑旭颖, 李兆新, 孙晓杰, 等. 渤海海域唐山贝类养殖区腹泻性和麻痹性贝类毒素的监测与风险评估[J]. 渔业科学进展, 2022, 43: 1-12. [33] BLANCO J, ARÉVALO F, CORREA J, et al. Lipophilic toxins in Galicia (NW Spain) between 2014 and 2017: incidence on the main molluscan species and analysis of the monitoring efficiency[J]. Toxins, 2019, 11(10): 612. doi: 10.3390/toxins11100612 [34] LEITE I do P, SANDRINI-NETO L, SQUELLA F L, et al. Toxin accumulation, detoxification and oxidative stress in bivalve (Anomalocardia flexuosa) exposed to the dinoflagellate Prorocentrumlima[J]. Aquat Toxicol, 2021, 232: 105738. [35] LEI L, NING W C, YG C, et al. Seasonal variability of Protoceratium reticulatum and yessotoxins in Japanese scallop Patinopecten yessoensis in northern Yellow Sea of China[J]. Toxicon, 2017, 139: 31-34. [36] VILARIÑO N, LOUZAO M, ABAL P, et al. Human poisoning from marine toxins: unknowns for optimal consumer protection[J]. Toxins, 2018, 10(8): 324. doi: 10.3390/toxins10080324 [37] EFSA Panel on Contaminants in the Food Chain (CONTAM). Statement on further elaboration of the consumption figure of 400 g shellfish meat on the basis of new consumption data[J]. EFSA J, 2010, 8(8): 1706. doi: 10.2903/j.efsa.2010.1706 [38] MCCARRON P, KILCOYNE J, HESS P. Effects of cooking and heat treatment on concentration and tissue distribution of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis)[J]. Toxicon, 2008, 51(6): 1081-1089. doi: 10.1016/j.toxicon.2008.01.009 [39] DÍEZ-QUIJADA JIMÉNEZ L, GUZMÁNGUILLÉN R, CASCAJOSA LIRA A, et al. In vitro assessment of cyanotoxins bioaccessibility in raw and cooked mussels[J]. Food Chem Toxicol, 2020, 140: 111391. doi: 10.1016/j.fct.2020.111391 -