Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates
-
摘要: 为了从生长性状、器官健康和营养代谢水平方面探究草食性鱼类草鱼 (Ctenopharyngodon idella) 对高糖饲料的适应和利用能力,以初始体质量 (132.01±16.43) g的草鱼为研究对象,分别配制正常糖水平 (15%,对照组) 和高糖水平 (40%,高糖组) 的等氮等能饲料分组投喂草鱼140 d,每组设3个重复,每个重复300 尾鱼。结果显示,相较于对照组,第60、第80 和第140天时高糖组草鱼的体质量显著增加 (P<0.05),第140天时,高糖组草鱼的脏体比、肠系膜脂肪系数、中肠绒毛高度和肝糖原含量均显著提高且肝脏和中肠肠道组织出现损伤。随实验时间的延长,高糖组葡萄糖激酶 (gk)、丙酮酸激酶 (pk)、糖原合酶 (gys2)、脂肪酸合成酶 (fas) 基因表达量呈下降趋势,磷酸烯醇式丙酮酸激酶 (pepck)、葡萄糖-6-磷酸酶 (g6pase) 基因表达量呈上升趋势,对照组gys2、fas、pepck和g6pase基因表达量变化趋势与高糖组一致,但gk、pk基因表达量在各时间点均无显著性变化。第140天时,与对照组相比,高糖组pk基因表达量显著下调,g6pase、pepck和fas基因表达量显著上调。综上,采用高糖饲料投喂草鱼可促进其体质量增加,但长期饲喂会对其生理指标造成一定负面影响,肝脏糖代谢相关基因表达变化显著。Abstract: In order to explore the growth performance, organic health and nutritional metabolism level of Ctenopharyngodon idella, a fed herbivorous fish-grass carp, with high dietary carbohydrates, we divided 1 800 individuals of (132.01±16.43) g into normal carbohydrate diet group (Control group) and high carbohydrate diet group (Group H), feeding them with 15% and 45% level carbohydrate diets for 140 d. Each group included three replications and each replication included 300 individuals. The results show that compared with the control group, the body mass of Group H was higher significantly on 60th, 80th and 140th day (P<0.05). The visceral body ratio, mesenteric fat coefficient, villus height and hepatic glycogen content of Group H increased significantly on 140th day, and damage was observed in liver and intestinal tract. The expression of glucose kinase gene (gk), pyruvate kinase gene (pk), glycogen synthase 2 gene (gys2) and fatty acid synthetase gene (fas) showed a decreasing trend in Group H along with time, while phosphoenolpyruvate carboxykinase gene (pepck) and glucose-6-phosphatase gene (g6pase) showed an increasing trend. The expressions of gys2, fas, pepck and g6pase had the same trend in Group L as that in Group H, while no significant variation trend was observed in gk and pk gene at each time. Compared with the control group, the expression of pk was significantly lower, while those of g6pase, pepck and fas were significantly higher in Group H. In conclusion, 40% level dietary carbohydrate can improve the weight gain rate of grass carp, but high dietary carbohydrates have a negative impact on physiological indicators and significantly affect glucose metabolism at molecular level.
-
Key words:
- Ctenopharyngodon idella /
- Glucose metabolism /
- Liver /
- Intestinal structure
-
图 1 草鱼肝脏组织结构
注:a. 对照组草鱼肝脏 (400×);b. 高糖组草鱼肝脏 (400×);c. 对照组草鱼肝脏 (1 000×);d. 高糖组草鱼肝脏 (1 000×)。
Figure 1. Tissue slices of liver of grass carp
Note: a. Liver of grass carp (400×); b. Liver in Group H of grass carp (400×); c. Liver in control group of grass carp (1 000×); d. Liver in Group H of grass carp (1 000×).
图 2 草鱼中肠组织结构
注:a. 对照组草鱼中肠 (100×);b. 高糖组草鱼中肠 (100×);c. 对照组草鱼中肠 (400×);d. 高糖组草鱼中肠 (400×)。
Figure 2. Tissue slices of midgut of grass carp
Note: a. Midgut in Control group grass carp (100 ×); b. Midgut in Group H of grass carp (100×); c. Midgut in control group of grass carp (400×); d. Midgut in Group H of grass carp (400×).
图 4 草鱼肝脏糖代谢相关基因的表达
注:方柱上的不同大写字母表示同一时间点高糖组、对照组的相对表达量差异显著,不同小写字母表示同一组在不同时间点的相对表达量差异显著 (P<0.05)。
Figure 4. Relative expression of genes related to liver glucose metabolism in grass carp
Note: Different uppercase letters on the square columns indicate significant differences in relative expression levels between the high glucose group and the control group at the same time point, while different lowercase letters on the square columns indicate significant differences in relative expression levels of the same group at different time points (P<0.05).
表 1 实验饲料配方及常规成分分析
Table 1. Formulation and proximate composition of diets
主要成分
Essential component普通饲料
Normal
diet/%高糖饲料
High-carbohydrate
diet/%鸡肉粉 Poultry meal 5 5 普通蒸汽级鱼粉 Ordinary fish meal 15 15 豆粕 Bean meal 33.57 33.57 木薯生淀粉 Raw cassava starch 15 40 豆油 Soybean oil 3 3 细统糠 Fine bran 25 0 多维多矿预混料① Premix (1%) 1 1 磷酸二氢钙 Ca(H2PO4)2 2 2 氯化胆碱 Choline chloride (50%) 0.2 0.2 食盐 Common salt 0.2 0.2 抗氧化剂 Antioxidant 0.03 0.03 合计 Total 100 100 营养成分 Nutritional ingredient 粗蛋白 Primary protein 28.55 28.55 粗脂肪 Crude fat 5.22 5.32 钙 Ca 1.35 1.35 磷 P 1.41 1.41 赖氨酸 Lys 1.83 1.83 蛋氨酸 Met 0.53 0.53 注:① 多维多矿预混料为商用预混料,由淮安市禾丰饲料有限公司提供。 Note: ① Multi-mineral premix is a commercial premix provided by Huai'an Hefeng Feed Co. Ltd.. 表 2 草鱼糖代谢相关基因 qRT-PCR 引物
Table 2. qRT-PCR primers of grass carp glycometabolism genes
基因
Gene引物序列 (5'—3')
Primer sequence (5'–3')GenBank 登录号
GenBank ID参考文献
Referencegk F: GGACAATGGTGAACTGGAGGACTTC
R: TAGCAGCACAAGACGCACAAGCGU065314 [19] pk F: GCCGAGAAAGTCTTCATCGCACAG
R: CGTCCAGAACCGCATTAGCCACJQ951928 [20] pepck F: ATCGTCACGGAGAACCAA
R: CCTGAACACCAAACTTAGCAJQ898294.1 [20] g6pase F: AAGGACAGCAGGTAGAAGAGG
R: ACGGAAAACAAGAAGAGCAGKY742725.1 gys2 F: CCTCCAGTAACAACTCACAACA
R: CAGATAGATTGGTGGTTACGCJQ792167 [19] fas F: GATGGGTCTAAGCCTGATGG
R: GACACCCTGTGGACATTGAGCMG241310 [19] β-actin F: GCTATGTGGCTCTTGACTTCG
R: GGGCACCTGAACCTCTCATTM25013.1 [21] 表 3 高糖饲料对草鱼生长性能的影响
Table 3. Effects of dietary carbohydrate on growth performance of grass carp
项目
Item样本量/组
N/Group养殖时间
Culture time/d对照组
Control group高糖组
Group H初始体质量 Initial body mass/g 60 0 130.61±14.79 132.83±13.36 终末体质量 Final body mass/g 60 40 146.08±27.97 143.88±20.43 60 153.18±29.40 165.54±36.64* 80 168.71±36.73 195.53±48.70* 140 361.18±67.61 388.57±59.02** 体质量增长率 RF/% 60 40 109.98±15.64 110.18±9.33 60 121.24±4.21 133.28±4.09* 80 129.82±0.23 147.20±9.68* 140 271.78±13.07 297.51±15.85 体长 Body length/cm 60 40 20.74±1.29 20.13±1.05 60 20.34±1.21 20.75±1.41 80 21.21±1.71 21.58±2.16 140 29.27±0.82 29.22±1.09 体高 Body height/cm 60 40 4.90±0.37 4.96±0.37 60 4.88±0.44 5.20±0.51** 80 5.34±0.59 5.49±0.70 140 6.54±0.15 6.87±0.32** 肥满度 RF 60 40 1.61±0.13 1.76±0.32** 60 1.78±0.28 1.85±0.23 80 1.77±0.19 1.92±0.28** 140 1.48±0.13 1.72±0.17** 肝体比 RHI/% 30 40 1.94±0.47 2.19±0.62 60 1.68±0.61 2.14±0.60 80 2.17±0.27 2.29±0.49 140 1.23±0.24 1.39±0.14 脏体比 RVI/% 30 140 6.64±1.29 8.12±0.71** 肠系膜脂肪系数 RMFI/% 30 140 1.16±0.54 2.20±0.64** 空壳质量 WE/g 30 140 345.71±20.67 383.23±27.46** 注:*. 同一时期下高糖组与对照组相比差异显著 (P<0.05);**. 差异极显著 (P<0.01)。后表同此。 Note: *. There are significant differences between the high glucose group and the control group during the same period (P<0.05); **. Extremely significant differences (P<0.01). The same case in the following table. 表 4 高糖饲料对草鱼血糖、胰岛素、糖原的影响
Table 4. Effects of dietary carbohydrate on plasma glucose, insulin and glycogen of grass carp
项目
Item养殖时间
Culture time/d对照组
Control group高糖组
Group H血糖浓度 Blood glucose/(mmol·L−1) 40 10.95±0.99 10.99±1.17 60 11.46±2.15 13.65±1.63 80 9.77±1.77 10.79±1.78 140 13.39±0.63 12.78±1.00 胰岛素水平 Insulin level/(mIU·L−1) 140 9.23±1.18 10.31±1.17 肝糖原质量分数 Liver glycogen/(mg·g−1) 140 24.23±13.03 36.29±10.41* 肌糖原质量分数 Muscle glycogen/(mg·g−1) 140 0.15±0.06 0.24±0.08 -
[1] 草鱼产业发展报告[J]. 中国水产, 2021(2): 27-37. [2] WILSON R P. Utilization of dietary carbohydrate by fish[J]. Aquaculture, 1994, 124(1): 67-80. [3] 许霄霄, 刘伟, 文华, 等. 高糖饲料对吉富罗非鱼生长性能、饲料利用和糖脂代谢的影响[J]. 南方水产科学, 2017, 13(5): 94-102. doi: 10.3969/j.issn.2095-0780.2017.05.013 [4] 齐野, 孙向军, 于刚, 等. 饲料可消化糖水平对宝石鲈餐后代谢的影响[J]. 南方水产, 2010, 6(2): 59-65. [5] PAN M Z, LIU D N, LIU J M, et al. Biotin alleviates hepatic and intestinal inflammation and apoptosis induced by high dietary carbohydrate in juvenile turbot (Scophthalmus maximus L.)[J]. Fish Shellfish Immunol, 2022, 130(8): 560-571. [6] 陈少莲, 刘肖芳. 我国淡水优质草食性鱼类的营养和能量学研究: 草鱼、团头鲂对七种水生高等植物的最大摄食量和消化率的测定[J]. 水生生物学报, 1993, 17(1): 1-12. [7] 张蕾, 章文琪, 吴仁福, 等. 中华绒螯蟹成蟹养殖池塘常用水草的营养成分比较[J]. 浙江海洋学院学报(自然科学版), 2016, 35(2): 113-121. [8] TIAN L X, LIU Y J, YANG H J, et al. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella)[J]. Aquac Int, 2012, 20(2): 283-293. doi: 10.1007/s10499-011-9456-6 [9] SU J Z, MEI L Y, XI L W, et al. Responses of glycolysis, glycogen accumulation and glucose-induced lipogenesis in grass carp and Chinese longsnout catfish fed high-carbohydrate diet[J]. Aquaculture, 2021, 533: 736146. doi: 10.1016/j.aquaculture.2020.736146 [10] CAI W J, LIANG X F, YUAN X C, et al. Different strategies of grass carp (Ctenopharyngodon idella) responding to insufficient or excessive dietary carbohydrate[J]. Aquaculture, 2018, 497: 292-298. doi: 10.1016/j.aquaculture.2018.07.042 [11] LI X S, ZHU X M, HAN D, et al. Carbohydrate utilization by herbivorous and omnivorous freshwater fish species: a comparative study on gibel carp (Carassius auratus gibelio. var CAS III) and grass carp (Ctenopharyngodon idellus)[J]. Aquac Res, 2016, 47(1): 128-139. doi: 10.1111/are.12476 [12] 曹俊明, 关国强, 刘永坚, 等. 饲料蛋白质、脂肪、碳水化合物水平对草鱼生长和组织营养成分组成的影响[J]. 水产科技情报, 1997(2): 8-12. doi: 10.16446/j.cnki.1001-1994.1997.02.002 [13] YUAN X C, LIANG X F, LI A X, et al. The feedback regulation of carbohydrates intake on food intake and appetite in grass carp (Ctenopharyngodon idella)[J]. Fish Physiol Biochem, 2021, 47(5): 1395-1403. doi: 10.1007/s10695-020-00914-5 [14] 樊佳佳, 唐小红, 白俊杰, 等. 草鱼PKMa基因SNPs筛选及与耐糖性状的关联分析[J]. 农业生物技术学报, 2019, 27(6): 1072-1080. [15] 孙雪. 草鱼生长相关SNPs标记的筛选及优势基因型的聚合效果分析[D]. 上海: 上海海洋大学, 2020: 15. [16] MARANDEL L, SEILIEZ I, VERON V, et al. New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): a gene duplication trail[J]. Physiol Genomics, 2015, 47(7): 253-263. doi: 10.1152/physiolgenomics.00026.2015 [17] BOONANUNTANASARN S, KUMKHONG S, YOOHAT K, et al. Molecular responses of Nile tilapia (Oreochromis niloticus) to different levels of dietary carbohydrates[J]. Aquaculture, 2018, 482: 117-123. doi: 10.1016/j.aquaculture.2017.09.032 [18] 陈团, 胡毅, 张德洪, 等. 不同糖源膨化饲料对大规格草鱼生长、越冬及血清部分生化指标的影响[J]. 水产学报, 2019, 43(4): 1069-1079. [19] FANG L, GUO X, LIANG X F. First feeding of grass carp (Ctenopharyngodon idellus) with a high-carbohydrate diet: the effect on glucose metabolism in juveniles[J]. Aquac Rep, 2021, 21: 100830. doi: 10.1016/j.aqrep.2021.100830 [20] LI A X, YUAN X C, LIANG X F, et al. Adaptations of lipid metabolism and food intake in response to low and high fat diets in juvenile grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2016, 457: 43-49. doi: 10.1016/j.aquaculture.2016.01.014 [21] GONG L, HE H C, LI D J, et al. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps[J]. Front Microbiol, 2019, 10: 1384. doi: 10.3389/fmicb.2019.01384 [22] GAO W, LIU Y J, TIAN L X, et al. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella)[J]. Aquac Nutr, 2010, 16(3): 327-333. [23] 胡毅, 陈云飞, 张德洪, 等. 不同碳水化合物和蛋白质水平膨化饲料对大规格草鱼生长、肠道消化酶及血清指标的影响[J]. 水产学报, 2018, 42(5): 777-786. [24] SONG X R, LIU H K, HAN D, et al. Two strains of gibel carp (Carassius gibelio) exhibit diverse responses to carbohydrates in a low-lipid diet[J]. Aquac Nutr, 2022, 2022: 9417331. DOI: 10.1155/2022/9417331. [25] SONG X R, MARANDEL L, SKIBA-CASSY S, et al. Regulation by dietary carbohydrates of intermediary metabolism in liver and muscle of two isogenic lines of rainbow trout[J]. Front Physiol, 2018, 9: 1579. doi: 10.3389/fphys.2018.01579 [26] YUAN X C, ZHOU Y, LIANG X F, et al. Molecular cloning, expression and activity of pyruvate kinase in grass carp Ctenopharyngodon idella: Effects of dietary carbohydrate level[J]. Aquaculture, 2013, 410/411: 32-40. doi: 10.1016/j.aquaculture.2013.06.009 [27] WANG J T, LI X Y, HAN T, et al. Effects of different dietary carbohydrate levels on growth, feed utilization and body composition of juvenile grouper Epinephelus akaara[J]. Aquaculture, 2016, 459: 143-147. doi: 10.1016/j.aquaculture.2016.03.034 [28] LI X F, LIU W B, LU K L, et al. Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala[J]. Fish Shellfish Immunol, 2012, 33(2): 316-323. doi: 10.1016/j.fsi.2012.05.007 [29] ABIMORAD E G, CARNEIRO D J, URBINATI E C. Growth and metabolism of pacu (Piaractus mesopotamicus Holmberg 1887) juveniles fed diets containing different protein, lipid and carbohydrate levels[J]. Aquac Res, 2007, 38(1): 36-44. doi: 10.1111/j.1365-2109.2006.01621.x [30] VASQUEZ-TORRES W, ARIAS-CASTELLANOS J A. Effect of dietary carbohydrates and lipids on growth in cachama (Piaractus brachypomus)[J]. Aquac Res, 2013, 44(11): 1768-1776. [31] YE W J, TAN X Y, CHEN Y D, et al. Effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae, Pelteobagrus)[J]. Aquac Res, 2009, 40(12): 1410-1418. doi: 10.1111/j.1365-2109.2009.02239.x [32] TIAN J, WU F, YU L J, et al. The effects of high-macronutrient (protein, fat and carbohydrate) diets on growth performance and muscular metabolic responses in grass carp[J]. Aquac Nutr, 2020, 26(6): 2135-2146. doi: 10.1111/anu.13152 [33] WANG J L, LU R H, SUN J J, et al. Differential expression of lipid metabolism-related genes and miRNAs in Ctenopharyngodon idella liver in relation to fatty liver induced by high non-protein energy diets[J]. Aquac Nutr, 2017, 48(8): 4070-4085. [34] 付兵, 郁二蒙, 王广军, 等. 投喂蚕豆对草鱼肝脏脂肪蓄积及脂肪代谢的影响[J]. 上海海洋大学学报, 2020, 29(1): 45-54. doi: 10.12024/jsou.20190302546 [35] CAHU C L, GISBERT E, VILLENEUVE L, et al. Influence of dietary phospholipids on early ontogenesis of fish[J]. Aquac Res, 2009, 40(9): 989-999. doi: 10.1111/j.1365-2109.2009.02190.x [36] LI X F, XU C, ZHANG D D, et al. Molecular characterization and expression analysis of glucokinase from herbivorous fish Megalobrama amblycephala subjected to a glucose load after the adaption to dietary carbohydrate levels[J]. Aquaculture, 2016, 459: 89-98. doi: 10.1016/j.aquaculture.2016.03.035 [37] SONG X R, MARANDEL L, DUPONT-NIVET M, et al. Hepatic glucose metabolic responses to digestible dietary carbohydrates in two isogenic lines of rainbow trout[J]. Biol Open, 2018, 7(6): bio032896. [38] 徐晶, 梁旭方, 蔡文静, 等. 草鱼3个6-磷酸葡萄糖酶催化亚基的基因表达分析及高糖饲料对其表达的影响[J]. 中国水产科学, 2020, 27(1): 24-34. [39] QIANG J, YANG H, HE J, et al. Comparative study of the effects of two high-carbohydrate diets on growth and hepatic carbohydrate metabolic enzyme responses in juvenile GIFT tilapia (Oreochromis niloticus)[J]. Turkish J Fish Aquat, 2014, 14(2): 515-525. [40] SHI H J, LIU W B, XU C, et al. Transcriptional regulation of the AMP-activated protein kinase and glycolipid metabolism-related genes by insulin and glucagon in blunt snout bream (Megalobrama amblycephala): a comparative study[J]. Aquaculture, 2020, 515: 734553. doi: 10.1016/j.aquaculture.2019.734553 -