留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T0和T90网囊动稳特性比较分析

张锋 唐浩 刘伟 孙秋阳 朱美熹 张灿 单晨旭 郭许浩

张锋, 唐浩, 刘伟, 孙秋阳, 朱美熹, 张灿, 单晨旭, 郭许浩. T0和T90网囊动稳特性比较分析[J]. 南方水产科学. doi: 10.12131/20230018
引用本文: 张锋, 唐浩, 刘伟, 孙秋阳, 朱美熹, 张灿, 单晨旭, 郭许浩. T0和T90网囊动稳特性比较分析[J]. 南方水产科学. doi: 10.12131/20230018
ZHANG Feng, TANG Hao, LIU Wei, SUN Qiuyang, ZHU Meixi, ZHANG Can, SHAN Chenxu, GUO Xuhao. Comparative analysis of dynamic stability characteristics of T0 and T90 codends[J]. South China Fisheries Science. doi: 10.12131/20230018
Citation: ZHANG Feng, TANG Hao, LIU Wei, SUN Qiuyang, ZHU Meixi, ZHANG Can, SHAN Chenxu, GUO Xuhao. Comparative analysis of dynamic stability characteristics of T0 and T90 codends[J]. South China Fisheries Science. doi: 10.12131/20230018

T0和T90网囊动稳特性比较分析

doi: 10.12131/20230018
基金项目: 国家自然科学基金 (31902426)
详细信息
    作者简介:

    张锋:张 锋 (1998—),男,硕士研究生,研究方向为渔具与渔法。E-mail: zf10384@163.com

    通讯作者:

    唐 浩 (1988—),男,副教授,博士,研究方向为渔具与渔法。E-mail: htang@shou.edu.cn

  • 中图分类号: S 972.13+4

Comparative analysis of dynamic stability characteristics of T0 and T90 codends

  • 摘要: 改变网目使用方向是提高网囊选择性的主要方式之一,但易造成网囊水动力性能发生变化。为了量化T0 (传统菱形网目,即网衣纵目使用) 和T90 (网目旋转90°,即网衣横目使用) 两种网目使用方向下的网囊水动力和稳定性差异,利用循环动水槽试验,对T0和T90网囊在不同渔获量和网线直径条件下的形态、阻力和振荡变化进行测试分析。结果表明,T90网囊中段无明显收缩,中段网目张开角度约为T0网囊的1.2倍,且中段宽度明显大于T0网囊;T90网囊阻力大于T0,且模拟渔获物量每增加1倍,T90网囊阻力增加值约为T0的1.09倍。网囊存在渔获物时,T90网囊阻力振幅较T0大,采用T90网目的网囊会增加网囊阻力振幅,且随流速和渔获量的增加而增大。空网网囊纵向位移振幅和流速不存在明显关系。T0网囊纵向位移振幅较T90大,且随流速和渔获量的增加而增大,随网线直径的增加而减小。粗直径T90网囊有助于提高网囊的选择性和稳定性,但加大了网囊水阻力。研究结果可为优化网囊结构、改善网囊选择性,实现高效稳定的中层拖网作业提供基础科学数据。
  • 图  1  网囊网片结构示意图

    Figure  1.  Schematic diagram of netting panel of codend

    图  2  动水槽和仪器设备

    Figure  2.  Flume tank and equipment

    图  3  网囊侧视图 (左:T0 网囊;右:T90 网囊)

    Figure  3.  Side view of codend (Left: T0 codend; Right: T90 codend)

    图  4  网目平均开口角度

    Figure  4.  Opening angle of mesh

    图  5  渔获物在各流速下网囊水阻力的关系

    Figure  5.  Relationship between drag of codend with catches and current

    图  6  网囊阻力振幅变化

    Figure  6.  Oscillation amplitude of codend drag

    图  7  网囊纵向位移振幅变化

    Figure  7.  Oscillation amplitude of codend longitudinal displacement

    表  1  网囊规格及参数

    Table  1.   Specifications and parameters of codend

    网线材料Twine material网线直径Twine diameter/mm网目尺寸Mesh size/mm拉直长度Length/cm剪裁斜率Cutting ratio
    网囊 Codend(Part 2) T0 PE 1.11 40 150
    T90 PE 0.96 40 150
    T90 PE 1.04 40 150
    T90 PE 1.11 40 150
    延伸区 Extension(Part 1) T0 PE 1.11 40 48 4∶1
    T0 PE 1.11 40 48 4∶1
    T0 PE 1.11 40 48 4∶1
    T0 PE 1.11 40 48 4∶1
    注:PE表示聚乙烯材料。 Note: PE represents polyethylene material.
    下载: 导出CSV

    表  2  60~90 cm之间网目张开角度

    Table  2.   Opening angle of mesh between 60–90 cm

    模拟渔获物质量Simulated catch mass/kg网目使用方向Mesh orientation网线直径Twine diameter/mm不同流速下的网目张开角度mesh opening angle at different flow velocity/(°)
    0.4m·s−10.5m·s−10.6m·s−10.7m·s−1
    0 T90 0.96 37 35 36 33
    T90 1.04 44 41 41 38
    T90 1.11 50 46 44 42
    T0 1.11 42 37 36 35
    1.35 T90 0.96 35 33 33 35
    T90 1.04 40 39 39 37
    T90 1.11 47 44 42 40
    T0 1.11 40 38 33 34
    2.70 T90 0.96 35 35 37 33
    T90 1.04 37 36 36 34
    T90 1.11 42 40 42 39
    T0 1.11 39 34 36 31
    4.05 T90 0.96 33 35 33 32
    T90 1.04 35 34 34 34
    T90 1.11 40 36 39 35
    T0 1.11 36 34 31 28
    下载: 导出CSV

    表  3  T0和T90网囊在不同渔获量和流速下的阻力振幅

    Table  3.   Drag amplitude of T0 and T90 codend with different catches and flow velocities

    模拟渔获物质量Simulated catch mass/kg网目使用方向Mesh orientation网线直径Twine diameter/mm阻力振幅 Resistance amplitude/N
    0.4m·s−10.5m·s−10.6m·s−10.7m·s−1
    0 T90 0.96 0.036 0.021 0.057 0.096
    T90 1.04 0.012 0.027 0.043 0.084
    T90 1.11 0.011 0.023 0.035 0.071
    T0 1.11 0.012 0.025 0.045 0.097
    1.35 T90 0.96 0.027 0.054 0.123 0.198
    T90 1.04 0.044 0.075 0.133 0.215
    T90 1.11 0.031 0.061 0.097 0.191
    T0 1.11 0.015 0.031 0.051 0.091
    2.70 T90 0.96 0.045 0.137 0.160 0.199
    T90 1.04 0.059 0.144 0.277 0.332
    T90 1.11 0.037 0.079 0.145 0.187
    T0 1.11 0.027 0.09 0.106 0.123
    4.05 T90 0.96 0.092 0.147 0.222 0.365
    T90 1.04 0.197 0.267 0.307 0.337
    T90 1.11 0.081 0.165 0.264 0.327
    T0 1.11 0.199 0.232 0.226 0.295
    下载: 导出CSV

    表  4  T0和T90网囊在不同渔获量和流速下纵向的位移振幅

    Table  4.   Longitudinal displacement amplitude of T0 and T90 codends with different catches and flow velocities

    模拟渔获物质量Simulated catch mass/kg网目使用方向Mesh orientation网线直径Twine diameter/mmDisplacement amplitude/cm
    0.4m·s−10.5m·s−10.6m·s−10.7m·s−1
    0 T90 0.96 0.121 0.151 0.153 0.209
    T90 1.04 0.101 0.133 0.111 0.225
    T90 1.11 0.114 0.121 0.108 0.141
    T0 1.11 0.144 0.151 0.231 0.373
    1.35 T90 0.96 0.210 0.267 0.303 0.321
    T90 1.04 0.155 0.173 0.279 0.304
    T90 1.11 0.124 0.146 0.228 0.281
    T0 1.11 0.261 0.242 0.324 0.353
    2.70 T90 0.96 0.337 0.371 0.394 0.396
    T90 1.04 0.227 0.288 0.293 0.348
    T90 1.11 0.101 0.142 0.253 0.359
    T0 1.11 0.419 0.462 0.475 0.514
    4.05 T90 0.96 0.245 0.378 0.541 0.601
    T90 1.04 0.286 0.297 0.469 0.585
    T90 1.11 0.238 0.281 0.357 0.448
    T0 1.11 1.654 1.809 2.432 2.591
    下载: 导出CSV
  • [1] WILEMAN D, FERRO R S T, FONTEYNE R, et al. Manual of methods of measuring the selectivity of towed fishing gear[R]. Copenhagen: ICES Cooperative Research Report, 1996.
    [2] 臧迎亮, 虞聪达. 过滤性网渔具网囊网目扩张性能研究[J]. 浙江海洋学院学报 (自然科版), 2012, 31(4): 350-356.
    [3] HICKEY W M, BOULOS D L, BROTHERS G. A study of the influence of lastridge ropes on redfish selectivity in a bottom trawler[R]. Ontario, Canada: Department of Fisheries and Oceans, 1995.
    [4] CHENG Z, EINARSSON H A, BAYSE S, et al. Comparing size selectivity of traditional and knotless diamond-mesh codends in the Iceland redfish (Sebastes spp.) fishery[J]. Fish Res, 2019, 216: 138-144. doi: 10.1016/j.fishres.2019.04.009
    [5] PRIOUR D. Modelling axisymmetric codends made of hexagonal mesh types[J]. Ocean Eng, 2014, 92: 1-11. doi: 10.1016/j.oceaneng.2014.09.037
    [6] HERRMANN B, PRIOUR D, KRAG L A. Simulation-based study of the combined effect on codend size selection of turning meshes by 90° and reducing the number of meshes in the circumference for round fish[J]. Fish Res, 2007, 84(2): 222-232. doi: 10.1016/j.fishres.2006.10.020
    [7] MADSEN N, HERRMANN B, FRANDSEN R P, et al. Comparing selectivity of a standard and turned mesh T90 codend during towing and haul-back[J]. Aquat Living Resour, 2012, 25(3): 231-240. doi: 10.1051/alr/2012021
    [8] HANSEN U J. Performance of a trawl codend made from 90 turned netting (T90) compared with that of traditional codends[R]. Gdynia: Paper presented at the ICES Fishing Technology and Fish Behaviour Working Group Meeting, 2004.
    [9] MADSEN N, HANSEN K, MADSEN N A. Behavior of different trawl codend concepts[J]. Ocean Eng, 2015, 108: 571-577. doi: 10.1016/j.oceaneng.2015.08.047
    [10] CHENG Z H, PAUL D W, DAVID K. Hydrodynamic performance of full-scale T0 and T90 codends with and without a codend cover[J]. Ocean Eng, 2022, 10(3): 440.
    [11] O'NEILL F G, O'DONOGHUE T. The fluid dynamic loading on catch and the geometry of trawl codends[J]. Proc R Soc A Math Phys Eng Sci, 1997, 453: 1631-1648. doi: 10.1098/rspa.1997.0087
    [12] WAN R, JIA M X, GUAN Q L, et al. Hydrodynamic performance of a newly-designed Antarctic krill trawl using numerical simulation and physical modeling methods[J]. Ocean Eng, 2019, 179: 173-179. doi: 10.1016/j.oceaneng.2019.03.022
    [13] MADSEN N, TSCHERNIJ V, HANSEN K, et al. Development and testing of a species-selective flatfish otter trawl to reduce cod bycatches[J]. Fish Res, 2006, 78(2/3): 298-308.
    [14] BOUHOUBEINY E, GERMAIN G, DRUAULT P. Time-resolved PIV investigations of the flow field around rigid codend net structure[J]. Fish Res, 2011, 108: 344-355. doi: 10.1016/j.fishres.2011.01.010
    [15] THIERRY N N B, TANG H, XU L X, et al. Identifying the turbulent flow developing inside and around the bottom trawl by Electromagnetic Current Velocity Meter approach in the flume tank[J]. J Hydrodynam B, 2021, 33(3): 636-656. doi: 10.1007/s42241-021-0058-0
    [16] JONES E G, SUMMERBELL K, O'NEILL F. The influence of towing speed and fish density on the behaviour of haddock in a trawl codend[J]. Fish Res, 2008, 94(2): 166-174. doi: 10.1016/j.fishres.2008.06.010
    [17] TANG H, HU F X, ZHOU C, et al. Variations in hydrodynamic characteristics of netting panels with various twine materials, knot types and weave patterns at small attack angles[J]. Sci Rep, 2019, 9(1): 1923. doi: 10.1038/s41598-018-35907-1
    [18] HU F, MATUDA K, TOKAI T. Effects of drag coefficient of netting for dynamic similarity on model testing of trawl nets[J]. Fish Sci, 2001, 67(1): 84-89. doi: 10.1046/j.1444-2906.2001.00203.x
    [19] 陈明鑫, 许柳雄, 唐浩, 等. 基于多元变量的南极磷虾拖网作业状态影响因素分析[J]. 上海海洋大学学报, 2021, 30(1): 144-154.
    [20] 李俊伟. 基于小波变换的韩江年径流多时间尺度演变特征分析[J]. 广东水利水电, 2014(4): 5-7, 10. doi: 10.3969/j.issn.1008-0112.2014.04.002
    [21] SISTIAGA M, HERRMANN B, NIELSEN K N, et al. Understanding limits to cod and haddock separation using size selectivity in a multispecies trawl fishery: an application of FISHSELECT[J]. Can J Fish Aquat Sci, 2011, 68: 927-940. doi: 10.1139/f2011-017
    [22] HERRMANN B, SISTIAGA M, NIELSEN K N, et al. Understanding the size selectivity of redfish (Sebastes spp.) in North Atlantic trawl codends[J]. J Northwest Atl Fish Sci, 2012, 44: 1-13. doi: 10.2960/J.v44.m680
    [23] 杨吝. 不同结构网囊特性的初步研究[J]. 湛江海洋大学学报, 1998(2): 25-29.
    [24] HERRMANN B, WIENBECK H, MODERHAK W, et al. The influence of twine thickness, twine number and netting orientation on codend selectivity[J]. Fish Res, 2013, 145: 22-36. doi: 10.1016/j.fishres.2013.03.002
    [25] 薄佳男, 林可, 马家志, 等. 高分子编结网片水动力特性水槽试验研究[J]. 渔业现代化, 2020, 47(1): 72-79. doi: 10.3969/j.issn.1007-9580.2020.01.010
    [26] 张敏, 邹晓荣, 季星辉, 等. 东南太平洋公海水域智利竹䇲鱼探捕及其商业开发前景探讨[J]. 水产学报, 2005, 29(3): 386-391.
    [27] KIM H Y, LEE C W, SHIN J K, et al. Dynamic simulation of the behavior of purse seine gear and sea-trial verification[J]. Fish Res, 2007, 88(1/2/3): 109-119.
    [28] 唐浩, 张馨茹, 朱安然, 等. 网线直径和模拟渔获物对拖网网囊水阻力及形态影响[J]. 上海海洋大学学报, 2022, 31(3): 770-780. doi: 10.12024/jsou.20220303774
    [29] BEARMAN P. Vortex shedding from oscillating bluff bodies[J]. Annu Rev Fluid Mech, 1984, 16: 195-222. doi: 10.1146/annurev.fl.16.010184.001211
    [30] DRUAULT P, GERMAIN G. Analysis of hydrodynamics of a moving trawl codend and its fluttering motions in flume tank[J]. Eur J Mech B Fluids, 2016, 60: 219-229. doi: 10.1016/j.euromechflu.2016.06.010
    [31] LIU W, TANG H, XU L X, et al. Effect of cutting ratio and catch on drag characteristics and fluttering motions of, mid-water trawl codend[J]. J Mar Sci Eng, 2021, 9(3): 256. doi: 10.3390/jmse9030256
  • 加载中
计量
  • 文章访问数:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-03-09
  • 录用日期:  2023-03-21
  • 网络出版日期:  2023-03-11

目录

    /

    返回文章
    返回