Morphological characterization of embryonic development in Rana catesbeiana
-
摘要: 为探究牛蛙 (Rana catesbeiana) 早期胚胎发育过程并补充其生物学及影像学资料,采用人工养殖的牛蛙作为亲本,自然抱对产卵受精,观察记录其受精卵的胚胎发育过程,并根据胚胎形态的变化和生理特征划分胚胎发育分期表。结果显示,牛蛙受精卵卵径为 (1.41±0.31) mm,吸水后膨胀沉底,且能自转为植物极朝下、动物极朝上的状态。在温度为 (24.5±0.4) ℃的条件下,牛蛙早期胚胎发育过程可划分为7个阶段24个时期,自受精卵发育至鳃盖闭合期共耗时177 h 38 min,总积温为4 249.71 h·℃,整个发育过程呈现前期发育速度较快、后期较慢的趋势。胚胎自肌肉效应期开始,在受到外界刺激时,会做出头尾弯曲的环形收缩反应;而后随着胚胎孵化至鳃盖闭合完成期,胚体即可在水中自由游动。Abstract: To explore the early embryonic development process of bullfrogs (Rana catesbeiana) and supplement their biological information and imaging data, we obtained the fertilized eggs from artificially bred bullfrogs by natural oviposition to investigate their morphological changes and biological characteristics. The results show that the size of fertilized eggs was (1.41±0.31) mm. At temperature of (24.5±0.4) ℃, the early embryonic development process could be divided into 7 phases and 24 stages. It took 177 h 38 min for the fertilized eggs to reach the operculum closure stage, and the total accumulated temperature was 4 249.71 h·℃. The embryonic development process showed a pattern of a fast speed at the first several stages (From fertilized egg to 64-cell stage) and then a slowdown at the latter stages. When being stimulated by external stimuli, the embryo had an annular contraction response by bending the head and tail. Later, as the embryo hatched until the completion of gill closure, they become tadpoles.
-
图 1 牛蛙胚胎发育分期及各期的形态特征
注:a. 受精卵;b. 2 细胞期;c. 4 细胞期;d. 8 细胞期;e. 16 细胞期;f. 32 细胞期;g. 64 细胞期;h. 囊胚早期;i. 囊胚晚期;j. 原肠早期;k. 原肠中期;l. 原肠晚期;m. 神经板期;n. 神经褶期;o. 胚胎转动期;p. 神经管期;q. 尾芽期;r. 肌肉效应期;s. 心跳期;t1. 鳃血循环期 (头部侧面图);t2. 鳃血循环期 (尾部侧面图);u1. 开口期 (头部侧面图);u2. 开口期 (尾部侧面图);v1. 尾血循环期 (头部侧面图);v2. 尾血循环期 (尾部侧面图);w1. 右端鳃盖闭合期 (头部背面图);w2. 右端鳃盖闭合期 (头部腹面图);x1. 鳃盖闭合完成期 (背面图);x2. 鳃盖闭合完成期 (腹面图);1. 卵黄栓;2. 神经板;3. 神经褶;4. 神经沟;5. 神经管;6. 尾芽;7. 鳃芽;8. 鳃丝;9. 眼角膜;10. 心脏;11. 未闭合的左端鳃盖;12. 口。
Figure 1. Developmental stages and morphological characteristics of embryo of R. catesbeiana
Note: a. Fertilized eggs; b. 2-cell stage; c. 4-cell stage; d. 8-cell stage; e. 16-cell stage; f. 32-cell stage; g. 64-cell stage; h. Early blastula; i. Late blastocyst; j. Early gastrula stage; k. Mid-gastrula stage; l. Late gastrula stage; m. Neural plate stage; n. Neural folds stage; o. Embryo rotation stage; p. Neural tube stage; q. Tail-bud period; r. Muscular contraction stage; s. Heart beat stage; t1. Gill blood circulation period (Head side); t2. Gill blood circulation period (Tail side); u1. Opening period (Head side); u2. Opening period (Tail side); v1. Tail blood circulation period (Head side); v2. Tail blood circulation period (Tail side); w1. Right gill cover closure period (Head back); w2. Right gill cover closure period (Head abdomen) x1. Gill cover closure period (Back view); x2. Gill cover closure period (Abdomen view); 1. Yolk plug; 2. Neural plate; 3. Neural fold; 4. Neural groove; 5. Neural tube; 6. Tail bud; 7. Branchial bud; 8. Branchial filament; 9. Cornea; 10. Heart; 11. Unclosed left gill cover; 12. Mouth.
表 1 牛蛙胚胎发育分期
Table 1. Embryonic developmental stages of R. catesbeiana
发育阶段
Developmental stage发育时期
Developmental period受精后时间
Time after fertilization本期内
发育时间
Duration积温
Accumulative
temperature/
(h∙℃)图序
Plate合子 Zygote 受精卵 Fertilized eggs 2 h 1 min 48.51 a 卵裂 Cleavage 2 细胞 2-cell stage 2 h 1 min 25 mim 6.05 b 4 细胞期 4-cell stage 2 h 35 min 27 min 6.50 c 8 细胞期 8-cell stage 3 h 2 min 42 min 1.29 d 16 细胞期 16-cell stage 3 h 44 min 30 min 7.38 e 32 细胞期 32-cell stage 4 h 14 min 2 h 1 min 49.84 f 64 细胞期 64-cell stage 6 h 15 min 7 h 20 min 176.40 g 囊胚 Blastula 囊胚早期 Early blastula 13 h 35 min 6 h 42 min 156.00 h 囊胚晚期 Late blastocyst 20 h 7 min 1 h 11 min 27.08 i 原肠胚 Gastrula 原肠早期 Early gastrula stage 21 h 48 min 4 h 17 min 102.16 j 原肠中期 Mid-gastrula stage 26 h 5 min 1 h 2 min 24.88 k 原肠晚期 Late gastrula stage 27 h 7 min 6 h 51 min 161.44 l 神经胚 Neurula 神经板期 Neural plate stage 33 h 58 min 6 h 47 min 159.80 m 神经褶期 Neural folds stage 40 h 45 min 5 h 1 min 125.75 n 胚胎转动期 Embryo rotation period 45 h 46 min 3 h 51 min 88.10 o 神经管期 Neural tube stage 49 h 37 min 12 h 46 min 307.76 p 器官形成 Organ formation 尾芽期 Tail-bud period 62 h 23 min 5 h 26 min 130.44 q 肌肉效应期 Muscular contraction period 67 h 49 min 12 h 44 min 308.51 r 心跳期 Heart beating period 80 h 33 min 9 h 12 min 224.35 s 鳃血循环期 Gill blood circulation period 89 h 45 min 6 h 52 min 159.08 t1, t2 开口期 Opening period 96 h 37 min 7 h 16 min 176.13 u1, u2 尾血循环期 Tail blood circulation period 103 h 53 min 38 h 54 min 944.23 v1, v2 右端鳃盖闭合期 Right gill cover closure period 142 h 47 min 34 h 51 min 848.94 w1, w2 孵化完成 Hatching completion 鳃盖闭合完成期 Gill cover closure period 177 h 38 min x1, x2 -
[1] 王晓清, 肖克宇, 文祝友, 等. 雌雄牛蛙肌肉和皮肤营养成分比较分析[J]. 水利渔业, 2002, 22(1): 19-20. [2] HELBING C C, HAMMOND S A, JACKMAN S H, et al. Antimicrobial peptides from Rana [Lithobates] catesbeiana: gene structure and bioinformatic identification of novel forms from tadpoles[J]. Sci Rep, 2019, 9(1): 1529. doi: 10.1038/s41598-018-38442-1 [3] RUTCKEVISKI R, XAVIER-JUNIOR F H, MORAIS A R, et al. Thermo-oxidative stability evaluation of bullfrog (Rana catesbeiana Shaw) oil[J]. Molecules, 2017, 22(4): 606. doi: 10.3390/molecules22040606 [4] 姚冰冰. “链”通上下游, 牛蛙成小龙虾后又一千亿大单品?[N]. 中国食品报, 2023-04-06. [5] 高博. 我国牛蛙产业现状及前景分析[D]. 厦门: 集美大学, 2017: 13-14. [6] HURNEY C A, BABCOCK S K, SHOOK D R, et al. Normal table of embryonic development in the four-toed salamander, Hemidactylium scutatum[J]. Mech Dev, 2015, 136: 99-110. doi: 10.1016/j.mod.2014.12.007 [7] 山东淡水水产所牛蛙试验组. 牛蛙发育时期的划分[J]. 动物学杂志, 1966(3): 137-141. [8] 刘楚吾, 陈信初. 环境因素对牛蛙胚胎发育的影响[J]. 湖南师范大学自然科学学报, 1987(2): 60-64. [9] 王雪虹. 温度和机械刺激对牛蛙胚胎发育的影响[J]. 集美大学学报(自然科学版), 1997(2): 62-65. [10] 刘韬, 庄志鸿, 杨声强. 基于生物技术调控棘胸蛙繁殖与养殖的研究[J]. 中国农学通报, 2009, 25(7): 26-29. [11] 谢永广, 汪小冬, 吴亚峰, 等. 棘胸蛙胚胎发育观察与相关抗氧化酶活性变化研究[J/OL].水产科学:1-13[2023-09-06]. DOI: 10.16378/j.cnki.1003-1111.21209. [12] 邢君霞, 杨茂源, 陈朋, 等. 北极茴鱼胚胎及仔鱼发育[J]. 水生生物学报, 2023, 47(4): 648-656. [13] 李霞. 水产动物组织胚胎学[M]. 北京: 中国农业出版社, 2006: 229-241. [14] SHUMWAY W. Stages in the normal development of Rana pipiens I. External form[J]. Anat Rec, 1940, 78(2): 139-147. doi: 10.1002/ar.1090780202 [15] 于业辉, 张守纯, 刘超. 沈阳地区黑斑蛙早期胚胎发育研究[J]. 四川动物, 2013, 32(4): 535-539. [16] 郭琳. 河南南召花臭蛙的繁殖生态和早期胚胎发育研究[D]. 新乡: 河南师范大学, 2012: 29-36. [17] XIONG R C, JIANG J P, FEI L. Embryonic development of the concave-eared torrent frog with its significance on taxonomy[J]. Zool Res, 2010, 31(5): 490-498. [18] 徐大德, 李军, 李方满. 斑腿泛树蛙早期胚胎发育的研究[J]. 四川动物, 2007(3): 647-651. [19] LEE S, MIETCHEN D, CHO J, et al. In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards[J]. Differentiation, 2007, 75(1): 84-92. doi: 10.1111/j.1432-0436.2006.00114.x [20] MERZDORF C S, CHEN Y H, GOODENOUGH D A. Formation of functional tight junctions in Xenopus embryos[J]. Dev Biol, 1998, 195(2): 187-203. doi: 10.1006/dbio.1997.8846 [21] SEMENZA G L. Oxygen sensing, homeostasis, and disease[J]. N Engl J Med, 2011, 365(6): 537-547. doi: 10.1056/NEJMra1011165 [22] SAKA Y, SMITH J C. Spatial and temporal patterns of cell division during early Xenopus embryogenesis[J]. Dev Biol, 2001, 229(2): 307-318. doi: 10.1006/dbio.2000.0101 [23] 陶娟, 杨杰, 陈晓虹. 太行隆肛蛙的早期胚胎发育及生态适应性[J]. 动物学杂志, 2010, 45(5): 39-46. [24] 刘绍龙, 宋志明, 张家藻, 等. 饰纹姬蛙早期胚胎发育的研究[J]. 四川大学学报自然科学版, 1996(3): 323-329. [25] EGEL R. Life's order, complexity, organization, and its thermodynamic-holistic imperatives[J]. Life, 2012, 2(4): 323-363. doi: 10.3390/life2040323 [26] PUVANENDRAN V, FALK PETERSEN I B, LYSNE H, et al. Effects of different step-wise temperature increment regimes during egg incubation of A tlantic cod (Gadus morhua.) on egg viability and newly hatched larval quality[J]. Aquac Res, 2015, 46(1): 226-235. doi: 10.1111/are.12173 [27] LAHNSTEINER F, KLETZL M, WEISMANN T. The effect of temperature on embryonic and yolk-sac larval development in the burbot Lota lota[J]. J Fish Biol, 2012, 81(3): 977-986. doi: 10.1111/j.1095-8649.2012.03344.x [28] 王寿兵, 张思路, 屈云芳, 等. 辽宁产中国林蛙早期胚胎发育研究[J]. 复旦学报(自然科学版), 1996(2): 163-169. [29] JOHANSSON F, LEDERER B, LIND M I. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria[J]. PLoS One, 2010, 5(7): e11680. doi: 10.1371/journal.pone.0011680 [30] GAHM K, ARIETTA A A, SKELLY D K. Temperature-mediated trade-off between development and performance in larval wood frogs (Rana sylvatica)[J]. J Exp Zool A: Ecol Integr Physiol, 2021, 335(1): 146-157. doi: 10.1002/jez.2434 [31] 陈雯, 俞宝根, 郑荣泉, 等. 温度对棘胸蛙胚胎发育及蝌蚪表型特征的影响[J]. 贵州农业科学, 2010, 38(1): 108-110. doi: 10.3969/j.issn.1001-3601.2010.01.033 [32] 刘永鑫, 张殿福, 陶忠虎, 等. 温度对克氏原螯虾胚胎和幼体发育的影响[J]. 华中农业大学学报, 2021, 40(5): 146-153. [33] LI Y, COHEN J M, ROHR J R. Review and synthesis of the effects of climate change on amphibians[J]. Integr Zool, 2013, 8(2): 145-161. doi: 10.1111/1749-4877.12001 [34] 彭安权, 李新殿, 李慧萍, 等. 东北林蛙 (Rana dybowskii) 蝌蚪生长发育理想光照强度的研究[J]. 经济动物学报, 2015, 19(2): 80-85. [35] BERVEN K A, CHADRA B G. The relationship among egg size, density and food level on larval development in the wood frog (Rana sylvatica)[J]. Oecologia, 1988, 75: 67-72. doi: 10.1007/BF00378815 [36] ALBECKER M A, MCCOY M W. Local adaptation for enhanced salt tolerance reduces non-adaptive plasticity caused by osmotic stress[J]. Evolution, 2019, 73(9): 1941-1957. doi: 10.1111/evo.13798 [37] WANG S H, ZHAO L Y, LIU L S, et al. A complete embryonic developmental table of Microhyla fissipes (Amphibia, Anura, Microhylidae)[J]. Asian Herpetol Res, 2017, 8(2): 108-117. [38] 殷名称. 鱼类早期生活史研究与其进展[J]. 四川学报, 1991(4): 348-358. [39] AMIN N M, WOMBLE M, LEDON-RETTIG C, et al. Budgett's frog (Lepidobatrachus laevis): a new amphibian embryo for developmental biology[J]. Dev Biol, 2015, 405(2): 291-303. doi: 10.1016/j.ydbio.2015.06.007 [40] VICKARYOUS N, WHITELAW E. The role of early embryonic environment on epigenotype and phenotype[J]. Reprod Fertil Dev, 2005, 17(3): 335-340. doi: 10.1071/RD04133 [41] 王国恩. 鱼类早期胚胎发生及环境影响[J]. 东北师大学报(自然科学版), 1988(3): 115-131. [42] DMITRIEVA E V. Influence of the concentration of dissolved oxygen on embryonic development of the common toad (Bufo bufo)[J]. Ontogenez, 2015, 46(6): 416-429. [43] 王春青, 吕树臣. 中国林蛙蝌蚪气泡病的诊断与防治[J]. 中国兽医杂志, 2001(2): 40. doi: 10.3969/j.issn.0529-6005.2001.02.028 [44] FROMMEL A Y, STIEBENS V, CLEMMESEN C, et al. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua)[J]. Biogeosciences, 2010, 7(12): 3915-3919. doi: 10.5194/bg-7-3915-2010 [45] 刘洋, 于瑞海, 张哲, 等. 不同pH对海湾扇贝胚胎发育及幼虫生长发育的影响[J]. 渔业科学进展, 2020, 41(6): 108-114. doi: 10.19663/j.issn2095-9869.20190921001 [46] 孙艳秋, 刘鉴毅, 庄平, 等. 温度、盐度和pH对多纹钱蝶鱼胚胎发育的影响[J]. 南方水产科学, 2021, 17(6): 122-129. doi: 10.12131/20210109 [47] 宋振鑫, 陈超, 吴雷明, 等. 盐度与pH对云纹石斑鱼胚胎发育和仔鱼活力的影响[J]. 渔业科学进展, 2013, 34(6): 52-58. doi: 10.3969/j.issn.1000-7075.2013.06.008 [48] XIE Y F, WANG F F, ZHONG W J, et al. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis[J]. Biol Reprod, 2006, 75(1): 45-55. doi: 10.1095/biolreprod.105.049791 [49] DONG X X, LIU Q G, KAN D Q, et al. Effects of ammonia-N exposure on the growth, metabolizing enzymes, and metabolome of Macrobrachium rosenbergii[J]. Ecotoxicol Environ Saf, 2020, 189: 110046. doi: 10.1016/j.ecoenv.2019.110046 [50] 任昕. 七彩鲑受精卵感染水霉的预防与治疗[J]. 河北渔业, 2017(9): 42-43. doi: 10.3969/j.issn.1004-6755.2017.09.015 [51] 张元. 虹鳟卵孵化中水霉病的防控[J]. 水产学杂志, 2017, 30(1): 6-10. doi: 10.3969/j.issn.1005-3832.2017.01.002 [52] FORGIONE M E, BRADY S P. Road salt is more toxic to wood frog embryos from polluted ponds[J]. Environ Pollut, 2022, 296: 118757. doi: 10.1016/j.envpol.2021.118757 [53] LOMBARD-BANEK C, MOODY S A, NEMES P. High-sensitivity mass spectrometry for probing gene translation in single embryonic cells in the early frog (Xenopus) embryo[J]. Front Cell Dev Biol, 2016, 4: 100. [54] ROW J R, DONALDSON M E, LONGHI J N, et al. Tissue-specific transcriptome characterization for developing tadpoles of the northern leopard frog (Lithobates pipiens)[J]. Genomics, 2016, 108(5/6): 232-240. [55] BECK C W. Studying regeneration in Xenopus[J]. Methods Mol Biol, 2012, 917: 525-539. [56] PATEL J H, SCHATTINGER P A, TAKAYOSHI E E, et al. Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration[J]. Dev Biol, 2022, 483: 157-168. doi: 10.1016/j.ydbio.2022.01.007 [57] HAMILTON A M, BALASHOVA O A, BORODINSKY L N. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae[J]. Elife, 2021, 10: e61804. doi: 10.7554/eLife.61804 [58] KHA C X, SON P H, LAUPER J, et al. A model for investigating developmental eye repair in Xenopus laevis[J]. Exp Eye Res, 2018, 169: 38-47. doi: 10.1016/j.exer.2018.01.007 -
计量
- 文章访问数: 67
- 被引次数: 0