留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牛蛙胚胎发育的形态特征观察

陈秋羽 郑晓婷 仲劲松 陈智兵 王莹 梁雪莹 董宏标 张家松

陈秋羽, 郑晓婷, 仲劲松, 陈智兵, 王莹, 梁雪莹, 董宏标, 张家松. 牛蛙胚胎发育的形态特征观察[J]. 南方水产科学. doi: 10.12131/20230015
引用本文: 陈秋羽, 郑晓婷, 仲劲松, 陈智兵, 王莹, 梁雪莹, 董宏标, 张家松. 牛蛙胚胎发育的形态特征观察[J]. 南方水产科学. doi: 10.12131/20230015
CHEN Qiuyu, ZHENG Xiaoting, ZHONG Jinsong, CHEN Zhibin, WANG Ying, LIANG Xueying, DONG Hongbiao, ZHANG Jiasong. Morphological characterization of embryonic development in Rana catesbeiana[J]. South China Fisheries Science. doi: 10.12131/20230015
Citation: CHEN Qiuyu, ZHENG Xiaoting, ZHONG Jinsong, CHEN Zhibin, WANG Ying, LIANG Xueying, DONG Hongbiao, ZHANG Jiasong. Morphological characterization of embryonic development in Rana catesbeiana[J]. South China Fisheries Science. doi: 10.12131/20230015

牛蛙胚胎发育的形态特征观察

doi: 10.12131/20230015
基金项目: 广东省重点领域研发计划项目 (2021B0202030001);广东省现代农业产业技术体系创新团队建设项目 (2022KJ150);广东省驻镇帮镇扶村科技特派员项目 (KTP20210259);广州市农村科技特派员项目 (SL2022E04J00301)
详细信息
    作者简介:

    陈秋羽 (1999—),女,硕士研究生,研究方向为水产动物生理生态学。E-mail: ciiyii1010@163.com

    通讯作者:

    张家松 (1971—),男,研究员,博士,研究方向为设施渔业养殖技术。E-mail: jiasongzhang@hotmail.com

  • 中图分类号: S 966.3+1

Morphological characterization of embryonic development in Rana catesbeiana

  • 摘要: 为探究牛蛙 (Rana catesbeiana) 早期胚胎发育过程并补充其生物学及影像学资料,采用人工养殖的牛蛙作为亲本,自然抱对产卵受精,观察记录其受精卵的胚胎发育过程,并根据胚胎形态的变化和生理特征划分胚胎发育分期表。结果显示,牛蛙受精卵卵径为 (1.41±0.31) mm,吸水后膨胀沉底,且能自转为植物极朝下、动物极朝上的状态。在温度为 (24.5±0.4) ℃的条件下,牛蛙早期胚胎发育过程可划分为7个阶段24个时期,自受精卵发育至鳃盖闭合期共耗时177 h 38 min,总积温为4 249.71 h·℃,整个发育过程呈现前期发育速度较快、后期较慢的趋势。胚胎自肌肉效应期开始,在受到外界刺激时,会做出头尾弯曲的环形收缩反应;而后随着胚胎孵化至鳃盖闭合完成期,胚体即可在水中自由游动。
  • 图  1  牛蛙胚胎发育分期及各期的形态特征

    注:a. 受精卵;b. 2 细胞期;c. 4 细胞期;d. 8 细胞期;e. 16 细胞期;f. 32 细胞期;g. 64 细胞期;h. 囊胚早期;i. 囊胚晚期;j. 原肠早期;k. 原肠中期;l. 原肠晚期;m. 神经板期;n. 神经褶期;o. 胚胎转动期;p. 神经管期;q. 尾芽期;r. 肌肉效应期;s. 心跳期;t1. 鳃血循环期 (头部侧面图);t2. 鳃血循环期 (尾部侧面图);u1. 开口期 (头部侧面图);u2. 开口期 (尾部侧面图);v1. 尾血循环期 (头部侧面图);v2. 尾血循环期 (尾部侧面图);w1. 右端鳃盖闭合期 (头部背面图);w2. 右端鳃盖闭合期 (头部腹面图);x1. 鳃盖闭合完成期 (背面图);x2. 鳃盖闭合完成期 (腹面图);1. 卵黄栓;2. 神经板;3. 神经褶;4. 神经沟;5. 神经管;6. 尾芽;7. 鳃芽;8. 鳃丝;9. 眼角膜;10. 心脏;11. 未闭合的左端鳃盖;12. 口。

    Figure  1.  Developmental stages and morphological characteristics of embryo of R. catesbeiana

    Note: a. Fertilized eggs; b. 2-cell stage; c. 4-cell stage; d. 8-cell stage; e. 16-cell stage; f. 32-cell stage; g. 64-cell stage; h. Early blastula; i. Late blastocyst; j. Early gastrula stage; k. Mid-gastrula stage; l. Late gastrula stage; m. Neural plate stage; n. Neural folds stage; o. Embryo rotation stage; p. Neural tube stage; q. Tail-bud period; r. Muscular contraction stage; s. Heart beat stage; t1. Gill blood circulation period (Head side); t2. Gill blood circulation period (Tail side); u1. Opening period (Head side); u2. Opening period (Tail side); v1. Tail blood circulation period (Head side); v2. Tail blood circulation period (Tail side); w1. Right gill cover closure period (Head back); w2. Right gill cover closure period (Head abdomen) x1. Gill cover closure period (Back view); x2. Gill cover closure period (Abdomen view); 1. Yolk plug; 2. Neural plate; 3. Neural fold; 4. Neural groove; 5. Neural tube; 6. Tail bud; 7. Branchial bud; 8. Branchial filament; 9. Cornea; 10. Heart; 11. Unclosed left gill cover; 12. Mouth.

    表  1  牛蛙胚胎发育分期

    Table  1.   Embryonic developmental stages of R. catesbeiana

    发育阶段
    Developmental stage
    发育时期
    Developmental period
    受精后时间
    Time after fertilization
    本期内
    发育时间
    Duration
    积温
    Accumulative
    temperature/
    (h∙℃)
    图序
    Plate
    合子 Zygote 受精卵 Fertilized eggs 2 h 1 min 48.51 a
    卵裂 Cleavage 2 细胞 2-cell stage 2 h 1 min 25 mim 6.05 b
    4 细胞期 4-cell stage 2 h 35 min 27 min 6.50 c
    8 细胞期 8-cell stage 3 h 2 min 42 min 1.29 d
    16 细胞期 16-cell stage 3 h 44 min 30 min 7.38 e
    32 细胞期 32-cell stage 4 h 14 min 2 h 1 min 49.84 f
    64 细胞期 64-cell stage 6 h 15 min 7 h 20 min 176.40 g
    囊胚 Blastula 囊胚早期 Early blastula 13 h 35 min 6 h 42 min 156.00 h
    囊胚晚期 Late blastocyst 20 h 7 min 1 h 11 min 27.08 i
    原肠胚 Gastrula 原肠早期 Early gastrula stage 21 h 48 min 4 h 17 min 102.16 j
    原肠中期 Mid-gastrula stage 26 h 5 min 1 h 2 min 24.88 k
    原肠晚期 Late gastrula stage 27 h 7 min 6 h 51 min 161.44 l
    神经胚 Neurula 神经板期 Neural plate stage 33 h 58 min 6 h 47 min 159.80 m
    神经褶期 Neural folds stage 40 h 45 min 5 h 1 min 125.75 n
    胚胎转动期 Embryo rotation period 45 h 46 min 3 h 51 min 88.10 o
    神经管期 Neural tube stage 49 h 37 min 12 h 46 min 307.76 p
    器官形成 Organ formation 尾芽期 Tail-bud period 62 h 23 min 5 h 26 min 130.44 q
    肌肉效应期 Muscular contraction period 67 h 49 min 12 h 44 min 308.51 r
    心跳期 Heart beating period 80 h 33 min 9 h 12 min 224.35 s
    鳃血循环期 Gill blood circulation period 89 h 45 min 6 h 52 min 159.08 t1, t2
    开口期 Opening period 96 h 37 min 7 h 16 min 176.13 u1, u2
    尾血循环期 Tail blood circulation period 103 h 53 min 38 h 54 min 944.23 v1, v2
    右端鳃盖闭合期 Right gill cover closure period 142 h 47 min 34 h 51 min 848.94 w1, w2
    孵化完成 Hatching completion 鳃盖闭合完成期 Gill cover closure period 177 h 38 min x1, x2
    下载: 导出CSV
  • [1] 王晓清, 肖克宇, 文祝友, 等. 雌雄牛蛙肌肉和皮肤营养成分比较分析[J]. 水利渔业, 2002, 22(1): 19-20.
    [2] HELBING C C, HAMMOND S A, JACKMAN S H, et al. Antimicrobial peptides from Rana [Lithobates] catesbeiana: gene structure and bioinformatic identification of novel forms from tadpoles[J]. Sci Rep, 2019, 9(1): 1529. doi: 10.1038/s41598-018-38442-1
    [3] RUTCKEVISKI R, XAVIER-JUNIOR F H, MORAIS A R, et al. Thermo-oxidative stability evaluation of bullfrog (Rana catesbeiana Shaw) oil[J]. Molecules, 2017, 22(4): 606. doi: 10.3390/molecules22040606
    [4] 姚冰冰. “链”通上下游, 牛蛙成小龙虾后又一千亿大单品?[N]. 中国食品报, 2023-04-06.
    [5] 高博. 我国牛蛙产业现状及前景分析[D]. 厦门: 集美大学, 2017: 13-14.
    [6] HURNEY C A, BABCOCK S K, SHOOK D R, et al. Normal table of embryonic development in the four-toed salamander, Hemidactylium scutatum[J]. Mech Dev, 2015, 136: 99-110. doi: 10.1016/j.mod.2014.12.007
    [7] 山东淡水水产所牛蛙试验组. 牛蛙发育时期的划分[J]. 动物学杂志, 1966(3): 137-141.
    [8] 刘楚吾, 陈信初. 环境因素对牛蛙胚胎发育的影响[J]. 湖南师范大学自然科学学报, 1987(2): 60-64.
    [9] 王雪虹. 温度和机械刺激对牛蛙胚胎发育的影响[J]. 集美大学学报(自然科学版), 1997(2): 62-65.
    [10] 刘韬, 庄志鸿, 杨声强. 基于生物技术调控棘胸蛙繁殖与养殖的研究[J]. 中国农学通报, 2009, 25(7): 26-29.
    [11] 谢永广, 汪小冬, 吴亚峰, 等. 棘胸蛙胚胎发育观察与相关抗氧化酶活性变化研究[J/OL].水产科学:1-13[2023-09-06]. DOI: 10.16378/j.cnki.1003-1111.21209.
    [12] 邢君霞, 杨茂源, 陈朋, 等. 北极茴鱼胚胎及仔鱼发育[J]. 水生生物学报, 2023, 47(4): 648-656.
    [13] 李霞. 水产动物组织胚胎学[M]. 北京: 中国农业出版社, 2006: 229-241.
    [14] SHUMWAY W. Stages in the normal development of Rana pipiens I. External form[J]. Anat Rec, 1940, 78(2): 139-147. doi: 10.1002/ar.1090780202
    [15] 于业辉, 张守纯, 刘超. 沈阳地区黑斑蛙早期胚胎发育研究[J]. 四川动物, 2013, 32(4): 535-539.
    [16] 郭琳. 河南南召花臭蛙的繁殖生态和早期胚胎发育研究[D]. 新乡: 河南师范大学, 2012: 29-36.
    [17] XIONG R C, JIANG J P, FEI L. Embryonic development of the concave-eared torrent frog with its significance on taxonomy[J]. Zool Res, 2010, 31(5): 490-498.
    [18] 徐大德, 李军, 李方满. 斑腿泛树蛙早期胚胎发育的研究[J]. 四川动物, 2007(3): 647-651.
    [19] LEE S, MIETCHEN D, CHO J, et al. In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards[J]. Differentiation, 2007, 75(1): 84-92. doi: 10.1111/j.1432-0436.2006.00114.x
    [20] MERZDORF C S, CHEN Y H, GOODENOUGH D A. Formation of functional tight junctions in Xenopus embryos[J]. Dev Biol, 1998, 195(2): 187-203. doi: 10.1006/dbio.1997.8846
    [21] SEMENZA G L. Oxygen sensing, homeostasis, and disease[J]. N Engl J Med, 2011, 365(6): 537-547. doi: 10.1056/NEJMra1011165
    [22] SAKA Y, SMITH J C. Spatial and temporal patterns of cell division during early Xenopus embryogenesis[J]. Dev Biol, 2001, 229(2): 307-318. doi: 10.1006/dbio.2000.0101
    [23] 陶娟, 杨杰, 陈晓虹. 太行隆肛蛙的早期胚胎发育及生态适应性[J]. 动物学杂志, 2010, 45(5): 39-46.
    [24] 刘绍龙, 宋志明, 张家藻, 等. 饰纹姬蛙早期胚胎发育的研究[J]. 四川大学学报自然科学版, 1996(3): 323-329.
    [25] EGEL R. Life's order, complexity, organization, and its thermodynamic-holistic imperatives[J]. Life, 2012, 2(4): 323-363. doi: 10.3390/life2040323
    [26] PUVANENDRAN V, FALK PETERSEN I B, LYSNE H, et al. Effects of different step-wise temperature increment regimes during egg incubation of A tlantic cod (Gadus morhua.) on egg viability and newly hatched larval quality[J]. Aquac Res, 2015, 46(1): 226-235. doi: 10.1111/are.12173
    [27] LAHNSTEINER F, KLETZL M, WEISMANN T. The effect of temperature on embryonic and yolk-sac larval development in the burbot Lota lota[J]. J Fish Biol, 2012, 81(3): 977-986. doi: 10.1111/j.1095-8649.2012.03344.x
    [28] 王寿兵, 张思路, 屈云芳, 等. 辽宁产中国林蛙早期胚胎发育研究[J]. 复旦学报(自然科学版), 1996(2): 163-169.
    [29] JOHANSSON F, LEDERER B, LIND M I. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria[J]. PLoS One, 2010, 5(7): e11680. doi: 10.1371/journal.pone.0011680
    [30] GAHM K, ARIETTA A A, SKELLY D K. Temperature-mediated trade-off between development and performance in larval wood frogs (Rana sylvatica)[J]. J Exp Zool A: Ecol Integr Physiol, 2021, 335(1): 146-157. doi: 10.1002/jez.2434
    [31] 陈雯, 俞宝根, 郑荣泉, 等. 温度对棘胸蛙胚胎发育及蝌蚪表型特征的影响[J]. 贵州农业科学, 2010, 38(1): 108-110. doi: 10.3969/j.issn.1001-3601.2010.01.033
    [32] 刘永鑫, 张殿福, 陶忠虎, 等. 温度对克氏原螯虾胚胎和幼体发育的影响[J]. 华中农业大学学报, 2021, 40(5): 146-153.
    [33] LI Y, COHEN J M, ROHR J R. Review and synthesis of the effects of climate change on amphibians[J]. Integr Zool, 2013, 8(2): 145-161. doi: 10.1111/1749-4877.12001
    [34] 彭安权, 李新殿, 李慧萍, 等. 东北林蛙 (Rana dybowskii) 蝌蚪生长发育理想光照强度的研究[J]. 经济动物学报, 2015, 19(2): 80-85.
    [35] BERVEN K A, CHADRA B G. The relationship among egg size, density and food level on larval development in the wood frog (Rana sylvatica)[J]. Oecologia, 1988, 75: 67-72. doi: 10.1007/BF00378815
    [36] ALBECKER M A, MCCOY M W. Local adaptation for enhanced salt tolerance reduces non-adaptive plasticity caused by osmotic stress[J]. Evolution, 2019, 73(9): 1941-1957. doi: 10.1111/evo.13798
    [37] WANG S H, ZHAO L Y, LIU L S, et al. A complete embryonic developmental table of Microhyla fissipes (Amphibia, Anura, Microhylidae)[J]. Asian Herpetol Res, 2017, 8(2): 108-117.
    [38] 殷名称. 鱼类早期生活史研究与其进展[J]. 四川学报, 1991(4): 348-358.
    [39] AMIN N M, WOMBLE M, LEDON-RETTIG C, et al. Budgett's frog (Lepidobatrachus laevis): a new amphibian embryo for developmental biology[J]. Dev Biol, 2015, 405(2): 291-303. doi: 10.1016/j.ydbio.2015.06.007
    [40] VICKARYOUS N, WHITELAW E. The role of early embryonic environment on epigenotype and phenotype[J]. Reprod Fertil Dev, 2005, 17(3): 335-340. doi: 10.1071/RD04133
    [41] 王国恩. 鱼类早期胚胎发生及环境影响[J]. 东北师大学报(自然科学版), 1988(3): 115-131.
    [42] DMITRIEVA E V. Influence of the concentration of dissolved oxygen on embryonic development of the common toad (Bufo bufo)[J]. Ontogenez, 2015, 46(6): 416-429.
    [43] 王春青, 吕树臣. 中国林蛙蝌蚪气泡病的诊断与防治[J]. 中国兽医杂志, 2001(2): 40. doi: 10.3969/j.issn.0529-6005.2001.02.028
    [44] FROMMEL A Y, STIEBENS V, CLEMMESEN C, et al. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua)[J]. Biogeosciences, 2010, 7(12): 3915-3919. doi: 10.5194/bg-7-3915-2010
    [45] 刘洋, 于瑞海, 张哲, 等. 不同pH对海湾扇贝胚胎发育及幼虫生长发育的影响[J]. 渔业科学进展, 2020, 41(6): 108-114. doi: 10.19663/j.issn2095-9869.20190921001
    [46] 孙艳秋, 刘鉴毅, 庄平, 等. 温度、盐度和pH对多纹钱蝶鱼胚胎发育的影响[J]. 南方水产科学, 2021, 17(6): 122-129. doi: 10.12131/20210109
    [47] 宋振鑫, 陈超, 吴雷明, 等. 盐度与pH对云纹石斑鱼胚胎发育和仔鱼活力的影响[J]. 渔业科学进展, 2013, 34(6): 52-58. doi: 10.3969/j.issn.1000-7075.2013.06.008
    [48] XIE Y F, WANG F F, ZHONG W J, et al. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis[J]. Biol Reprod, 2006, 75(1): 45-55. doi: 10.1095/biolreprod.105.049791
    [49] DONG X X, LIU Q G, KAN D Q, et al. Effects of ammonia-N exposure on the growth, metabolizing enzymes, and metabolome of Macrobrachium rosenbergii[J]. Ecotoxicol Environ Saf, 2020, 189: 110046. doi: 10.1016/j.ecoenv.2019.110046
    [50] 任昕. 七彩鲑受精卵感染水霉的预防与治疗[J]. 河北渔业, 2017(9): 42-43. doi: 10.3969/j.issn.1004-6755.2017.09.015
    [51] 张元. 虹鳟卵孵化中水霉病的防控[J]. 水产学杂志, 2017, 30(1): 6-10. doi: 10.3969/j.issn.1005-3832.2017.01.002
    [52] FORGIONE M E, BRADY S P. Road salt is more toxic to wood frog embryos from polluted ponds[J]. Environ Pollut, 2022, 296: 118757. doi: 10.1016/j.envpol.2021.118757
    [53] LOMBARD-BANEK C, MOODY S A, NEMES P. High-sensitivity mass spectrometry for probing gene translation in single embryonic cells in the early frog (Xenopus) embryo[J]. Front Cell Dev Biol, 2016, 4: 100.
    [54] ROW J R, DONALDSON M E, LONGHI J N, et al. Tissue-specific transcriptome characterization for developing tadpoles of the northern leopard frog (Lithobates pipiens)[J]. Genomics, 2016, 108(5/6): 232-240.
    [55] BECK C W. Studying regeneration in Xenopus[J]. Methods Mol Biol, 2012, 917: 525-539.
    [56] PATEL J H, SCHATTINGER P A, TAKAYOSHI E E, et al. Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration[J]. Dev Biol, 2022, 483: 157-168. doi: 10.1016/j.ydbio.2022.01.007
    [57] HAMILTON A M, BALASHOVA O A, BORODINSKY L N. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae[J]. Elife, 2021, 10: e61804. doi: 10.7554/eLife.61804
    [58] KHA C X, SON P H, LAUPER J, et al. A model for investigating developmental eye repair in Xenopus laevis[J]. Exp Eye Res, 2018, 169: 38-47. doi: 10.1016/j.exer.2018.01.007
  • 加载中
计量
  • 文章访问数:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 修回日期:  2023-06-14
  • 录用日期:  2023-08-04
  • 网络出版日期:  2023-08-04

目录

    /

    返回文章
    返回