留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MaxEnt模型模拟中西太平洋鲣自由鱼群栖息地的研究

汪伟松 唐未 龚一赫 王学昉 李玉伟

汪伟松, 唐未, 龚一赫, 王学昉, 李玉伟. 基于MaxEnt模型模拟中西太平洋鲣自由鱼群栖息地的研究[J]. 南方水产科学, 2023, 19(5): 11-21. doi: 10.12131/20230011
引用本文: 汪伟松, 唐未, 龚一赫, 王学昉, 李玉伟. 基于MaxEnt模型模拟中西太平洋鲣自由鱼群栖息地的研究[J]. 南方水产科学, 2023, 19(5): 11-21. doi: 10.12131/20230011
WANG Weisong, TANG Wei, GONG Yihe, WANG Xuefang, LI Yuwei. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 11-21. doi: 10.12131/20230011
Citation: WANG Weisong, TANG Wei, GONG Yihe, WANG Xuefang, LI Yuwei. Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 11-21. doi: 10.12131/20230011

基于MaxEnt模型模拟中西太平洋鲣自由鱼群栖息地的研究

doi: 10.12131/20230011
基金项目: 国家自然科学基金青年科学基金项目 (41506151);国家重点研发计划 “蓝色粮仓科技创新”专项 (2019YFD0901404);国家远洋渔业工程技术研究中心开放基金 (A1-2006-23-200204)
详细信息
    作者简介:

    汪伟松 (1996—),男,硕士研究生,研究方向为渔业海洋学。E-mail: weisong19961219@163.com

    通讯作者:

    李玉伟 (1984—),男,讲师,博士,研究方向为渔具力学。E-mail: ywli@shou.edu.cn

  • 中图分类号: S 932.4

Modeling habitat of skipjack tuna of free swimming school in Western and Central Pacific Ocean based on MaxEnt model

  • 摘要: 由于漂流人工集鱼装置 (Fish aggregating device, FAD) 的大量使用对金枪鱼种群带来的负面效应,金枪鱼围网渔业转向捕捞自由群成为发展趋势,因此开展鲣 (Katsuwonus pelamis) 自由群的栖息地利用研究非常必要。使用2016—2020年中西太平洋渔业委员会 (Western and Central Pacific Fisheries Commission, WCPFC) 统计的月度金枪鱼渔业数据和不同层的水温 (SST、Temp200)、海表盐度 (SSS)、溶解氧浓度 (DO0、DO50、DO200)、东西向海流速度 (EV)、南北向海流速度 (NV)、混合层深度 (MLD)、叶绿素 a 浓度 (CHL0、CHL50、CHL100、CHL200) 共13个环境变量,通过最大熵模型 (Maximum Entropy Model, MaxEnt) 模拟鲣自由群的栖息地分布及其月变化规律。结果表明:模型测试和训练集的AUC值及灵敏度值均大于0.90,真实技巧统计值大于0.80,模型具有很强的预测能力,可用于鲣的栖息地适宜性模拟;SST和DO200是影响鲣自由群栖息地偏好的关键因子,最适范围分别为30~31  ℃、114~153 mmol·m−3。研究期内,鲣自由群高适宜栖息地主要靠近巴布亚新几内亚和所罗门群岛海域,不同时期向东延伸的范围有较大变化,经度差达到6°。研究结果可为中国金枪鱼围网船队进行鲣自由群中心渔场的预报提供参考。
  • 图  1  2016—2020 年中西太平洋金枪鱼围网捕捞自由鱼群的作业位置分布

    Figure  1.  Distribution of operating positions for tuna purse seine fishing of free fish schools in Western and Central Pacific Ocean from 2016 to 2020

    图  2  2016—2020 年模型性能的综合评价

    Figure  2.  Comprehensive evaluation of model performance from 2016 to 2020

    图  3  2016—2020 年使用 Jackknife 检验得到的测试增益

    Figure  3.  Test gain obtained using Jackknife test from 2016 to 2020

    图  4  海表温度对中西太平洋鲣栖息地适宜性的响应曲线

    Figure  4.  Response curves of SST to habitat suitability of skipjack tuna in Western and Central Pacific Ocean

    图  5  200 m 水层溶解氧浓度对中西太平洋鲣栖息地适宜性的响应曲线

    Figure  5.  Response curves of DO200 to habitat suitability of skipjack tuna in Western and Central Pacific Ocean

    图  6  2016—2020 年中西太平洋鲣自由鱼群潜在栖息地适宜性指数分布

    注:图中白色区域表示无数据。

    Figure  6.  Distribution of potential habitat suitability index for free swimming school of skipjack tuna in Western and Central Pacific Ocean from 2016 to 2020

    Note: The white area in the figure indicates no data.

    表  1  2016—2020 年环境因子年平均贡献率

    Table  1.   Average annual contribution rate of environmental factors from 2016 to 2020

    环境因子
    Environmental factor
    年平均贡献率 Average annual contribution rate/%
    20162017201820192020均值 Mean
    海表温度 SST 59.35 61.11 68.61 63.15 55.47 61.54
    50 m 叶绿素 a 浓度 CHL50 11.41 10.59 10.94 12.07 13.86 11.77
    200 m 溶解氧浓度 DO200 6.14 9.90 7.12 5.50 5.38 6.81
    200 m 水温 Temp200 4.73 3.79 3.80 5.45 7.44 5.04
    表层叶绿素 a 浓度 CHL0 2.90 3.81 1.18 4.25 6.48 3.72
    海表盐度 SSS 4.77 3.75 3.06 2.22 3.61 3.48
    海流速度 EV 2.68 1.13 1.01 1.03 1.69 1.51
    表层溶解氧浓度 DO0 1.77 1.84 1.13 1.09 1.63 1.49
    混合层深度 MLD 1.77 1.18 1.06 2.35 0.87 1.45
    200 m 叶绿素 a 浓度 CHL200 1.24 1.79 0.92 1.41 1.69 1.41
    100 m 叶绿素 a 浓度 CHL100 2.09 0.39 0.62 0.72 0.60 0.88
    50 m 溶解氧浓度 DO50 0.84 0.39 0.43 0.46 0.96 0.62
    南北向的海流速度 NV 0.32 0.33 0.11 0.32 0.34 0.28
    下载: 导出CSV
  • [1] Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture, 2021[R]. Rome: FAO, 2021: 127-148.
    [2] TRYGONIS V, GEORGAKARAKOS S, DAGORN L, et al. Spatiotemporal distribution of fish schools around drifting fish aggregating devices[J]. Fish Res, 2016, 177: 39-49. doi: 10.1016/j.fishres.2016.01.013
    [3] HALLIER J P, GAERTNER D. Drifting fish aggregation devices could act as an ecological trap for tropical tuna species[J]. Mar Ecol Prog Ser, 2008, 353: 255-264. doi: 10.3354/meps07180
    [4] TSENG C T, SUN C L, YEH S Z, et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data[J]. Int J Remote Sens, 2010, 31(17/18): 4543-4558.
    [5] MUGO R, SAITOH S E I I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
    [6] DUERI S, BOPP L, MAURY O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Glob Chang Biol, 2014, 20(3): 742-753. doi: 10.1111/gcb.12460
    [7] ADAM M S, SIBERT J R. Population dynamics and movements of skipjack tuna (Katsuwonus pelamis) in the Maldivian fishery: analysis of tagging data from an advection-diffusion-reaction model[J]. Aquat Living Resour, 2002, 15(1): 13-23. doi: 10.1016/S0990-7440(02)01155-5
    [8] SALAZAR J E, BENAVIDES I F, CABRERA C V P, et al. Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean[J]. Reg Stud Mar Sci, 2021, 45: 101-115.
    [9] MUGO R, SAITOH S I. Ensemble modelling of skipjack tuna (Katsuwonus pelamis) habitats in the western north Pacific using satellite remotely sensed data: a comparative analysis using machine-learning models[J]. Remote Sens, 2020, 12(16): 2591-2605. doi: 10.3390/rs12162591
    [10] ALABIA I D, SAITOH S I, MUGO R, et al. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes pastrami) in the western and central North Pacific[J]. Fish Oceanogr, 2015, 24(2): 190-203. doi: 10.1111/fog.12102
    [11] CHEN B Y, HONG Z, HAO X Q, et al. Environmental models for predicting habitat of the Indo-Pacific humpback dolphins in Fujian, China[J]. Aquat Conserv, 2020, 30(4): 787-793. doi: 10.1002/aqc.3279
    [12] YOSHINAGA D H, FRANK H A. Histamine-producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis)[J]. Appl Environ Microb, 1982, 44(2): 447-452. doi: 10.1128/aem.44.2.447-452.1982
    [13] DAI L, WANG X, STAPLES K W, et al. Factors influencing successful fishing of tuna free-swimming schools in the equatorial western Pacific Ocean[J]. Turk J Fish Aquat Sc, 2019, 20(5): 341-350.
    [14] SIBERT J, SENINA I, LEHODEY P, et al. Shifting from marine reserves to maritime zoning for conservation of Pacific bigeye tuna (Thunnus obesus)[J]. P Natl Acad Sci USA, 2012, 109(44): 18221-18225. doi: 10.1073/pnas.1209468109
    [15] PRINCE E D, GOODYEAR C P. Hypoxia-based habitat compression of tropical pelagic fishes[J]. Fish Oceanogr, 2006, 15(6): 451-464. doi: 10.1111/j.1365-2419.2005.00393.x
    [16] LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575
    [17] DI Y U, CHANG F C, BIN W, et al. Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis)[J]. Chin J Nat Medicines, 2014, 12(9): 712-720. doi: 10.1016/S1875-5364(14)60110-2
    [18] ROGER C. The plankton of the tropical western Indian Ocean as a biomass indirectly supporting surface tunas (yellowfin, Thunnus albacares and skipjack, Katsuwonus pelamis)[J]. Environ Biol Fish, 1994, 39: 161-172. doi: 10.1007/BF00004934
    [19] LEROY B, ITANO D G, USU T, et al. Vertical behavior and the observation of FAD effects on tropical tuna in the warm-pool of the western Pacific Ocean[M]//NIELSEN J L, ARRIZABALAGA H, FRAGOSO N, et al. Tagging and tracking of marine animals with electronic devices. Reviews: methods and technologies in fish biology and fisheries, vol 9. Dordrecht: Springer, 2009: 161-179.
    [20] KIYOFUJI H, AOKI Y, KINOSHITA J, et al. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean[J]. Prog Oceanogr, 2019, 175: 55-67. doi: 10.1016/j.pocean.2019.03.006
    [21] SCHAEFER K M. Vertical movement pattern of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags[J]. Fish Bull, 2007, 105: 379-389.
    [22] 杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学报, 2010, 25(1): 34-40.
    [23] GARCIA C B, GARCIA J, LOPEZ MARTIN M M, et al. Collinearity: revisiting the variance inflation factor in ridge regression[J]. J Appl Stat, 2015, 42(3): 648-661. doi: 10.1080/02664763.2014.980789
    [24] IGARASHI H, SAITOH S I, ISHIKAWA Y, et al. Identifying potential habitat distribution of the neon flying squid (Ommastrephes bartramii) off the eastern coast of Japan in winter[J]. Fish Oceanogr, 2018, 27(1): 16-27. doi: 10.1111/fog.12230
    [25] 赵静, 柳晓雪, 吴建辉, 等. 零膨胀模型在珍稀鱼类资源时空分布预测中的应用: 以长江口刀鲚为例[J]. 生态学杂志, 2020, 39(9): 3155-3163. doi: 10.13292/j.1000-4890.202009.028
    [26] Sagarese S R, Frisk M G, Cerrato R M, et al. Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (Squalus acanthias) in the Northeast (US) shelf large marine ecosystem[J]. Can J Fish Aquat Sci, 2014, 71(6): 847-877. doi: 10.1139/cjfas-2013-0342
    [27] 马金, 黄金玲, 陈锦辉, 等. 基于GAM的长江口鱼类资源时空分布及影响因素[J]. 水产学报, 2020, 44(6): 936-946.
    [28] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4): 231-259.
    [29] MANEL S, WILLIAMS H C, ORMEROD S J. Evaluating presence absence models in ecology: the need to account for prevalence[J]. J Appl Ecol, 2001, 38(5): 921-931. doi: 10.1046/j.1365-2664.2001.00647.x
    [30] ZU T P, KANG R, WEN M L, et al. Belief reliability distribution based on maximum entropy principle[J]. IEEE Access, 2017, 6: 1577-1582.
    [31] ALLOUCHE O, TSOAR A, KADMON R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)[J]. J Appl Ecol, 2006, 43(6): 1223-1232. doi: 10.1111/j.1365-2664.2006.01214.x
    [32] MEYSMAN F J R, BRUERS S. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses[J]. Philosophical Transactions of the Royal Society B:Biol Sci, 2010, 365(1545): 1405-1416. doi: 10.1098/rstb.2009.0300
    [33] SHCHEGLOVITOVA M, ANDERSON R P. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes[J]. Ecol Model, 2013, 269: 9-17. doi: 10.1016/j.ecolmodel.2013.08.011
    [34] ELITH J H, GRAHAM C P, ANDERSON R, et al. Novel methods improve prediction of species distributions from occurrence data[J]. Ecography, 2006, 29(2): 129-151. doi: 10.1111/j.2006.0906-7590.04596.x
    [35] ZU T, KANG R, WEN M, et al. Belief reliability distribution based on maximum entropy principle[J]. IEEE Access, 2017, 6: 1577-1582.
    [36] WEST A M, KUMAR S, BROWN C S, et al. Field validation of an invasive species MaxEnt model[J]. Ecol Inform, 2016, 36: 126-134. doi: 10.1016/j.ecoinf.2016.11.001
    [37] KUMAR P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges[J]. Biodivers Conserv, 2012, 21(5): 1251-1266. doi: 10.1007/s10531-012-0279-1
    [38] MORENO R, ZAMORA R, MOLINA J R, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum Entropy (MaxEnt)[J]. Ecol Inform, 2011, 6(6): 364-370. doi: 10.1016/j.ecoinf.2011.07.003
    [39] LIU S J, YANG J. Modeling spatial patterns of forest fire in Heilongjiang Province using Generalized Linear Model and Maximum Entropy Model[J]. Chin J Ecol, 2013, 32(6): 1620-1628.
    [40] 梁阳阳, 陈康, 崔凯, 等. 气候变化情景下须鳗鰕虎鱼在中国的潜在地理分布[J]. 大连海洋大学学报, 2022, 37(5): 739-746.
    [41] NURSAN M, YONVITNER Y, AGUS S B. Distribution of skipjack (Katsuwonus pelamis) fishing areas using purse seine fishing equipment in WPP 573[J]. J Trop Fish Manag, 2022, 6(1): 11-20.
    [42] ZHANG K L, YAO L J, MENG J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Sci Total Environ, 2018, 634: 1326-1334. doi: 10.1016/j.scitotenv.2018.04.112
    [43] 陈世泳. 中西太平洋正鲣渔场推移与表明水温变化之关系[D]. 基隆: 台湾海洋大学, 2006: 24-26.
    [44] ZHOU C, HU Y Y, CAO J, et al. Comparison of nominal and standardized catch per unit effort data in quantifying habitat suitability of skipjack tuna in the equatorial Pacific Ocean[J]. Acta Oceanol Sin, 2022, 41(3): 1-10. doi: 10.1007/s13131-021-1922-z
    [45] PICAUT J, IOUALALEN M, MENKÈS C, et al. Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO[J]. Science, 1996, 274(5292): 1486-1489. doi: 10.1126/science.274.5292.1486
    [46] ELY B, VIÑAS J, ALVARADO BREMER J R, et al. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis)[J]. BMC Evol Biol, 2005, 5(1): 1-9. doi: 10.1186/1471-2148-5-1
    [47] LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49(1/2/3/4): 439-468.
    [48] BOYCE D G, TITTENSOR D P, WORM B. Effects of temperature on global patterns of tuna and billfish richness[J]. Mar Ecol Prog Ser, 2008, 355: 267-276. doi: 10.3354/meps07237
    [49] MATHIEU-COSTELLO O, BRILL R W, HOCHACHKA P W. Structural basis for oxygen delivery: muscle capillaries and manifolds in tuna red muscle[J]. Comp Biochem Physiol A, 1996, 113(1): 25-31. doi: 10.1016/0300-9629(95)02059-4
    [50] BUSHNELL P G, BRILL R W. Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas to acute hypoxia, and a model of their cardiorespiratory function[J]. Physiol Zool, 1991, 64(3): 787-811. doi: 10.1086/physzool.64.3.30158207
    [51] SCHAEFER K M, FULLER D W. Vertical movement pattern of skipjack tuna (Katsuwonus pelamis) in the eastern equatorial Pacific Ocean, as revealed with archival tags[J]. Fish Bull, 2007, 105: 379-989.
    [52] ZAINUDDIN M, KIYOFUJI H, SAITOH K, et al. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific[J]. Deep-Sea Res II, 2006, 53(3/4): 419-431. doi: 10.1016/j.dsr2.2006.01.007
    [53] BERNAL D, BRILL R W, DICKSON K A, et al. Sharing the water column: physiological mechanisms underlying species-specific habitat use in tunas[J]. Rev Fish Biol Fisher, 2017, 27(4): 843-880. doi: 10.1007/s11160-017-9497-7
    [54] DEARY A L, MORET-FERGUSON S, ENGELS M, et al. Influence of central Pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species1[J]. Pac Sci, 2015, 69(4): 461-475. doi: 10.2984/69.4.3
    [55] ANDRADE H A. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south western Atlantic[J]. Fish Oceanogr, 2003, 12(1): 10-18. doi: 10.1046/j.1365-2419.2003.00220.x
    [56] LLOPIZ J K, HOBDAY A J. A global comparative analysis of the feeding dynamics and environmental conditions of larval tunas, mackerels, and billfishes[J]. Deep-Sea Res II, 2015, 113: 113-124. doi: 10.1016/j.dsr2.2014.05.014
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  37
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-05-09
  • 录用日期:  2023-05-25
  • 网络出版日期:  2023-06-06
  • 刊出日期:  2023-10-05

目录

    /

    返回文章
    返回