Study on muscle fiber characteristics, metabolic enzymes and gene expression of caudal stalk of golden-backed carp (Cyprinus carpio var. Jinbei)
-
摘要: 稻田金背鲤 (Cyprinus carpio var. Jinbei) 是经过多个世代自然选择和人工选择生活于稻田的鲤鱼。为推广金背鲤-稻田养殖模式,为该模式下的良种选育提供数据支撑,以池塘养殖的金背鲤为对照组,采用组织学、酶学及分子生物学方法分析了其尾柄肌纤维及相关代谢酶与基因表达,探究了稻田金背鲤尾柄肌肉在稻田浅水生态条件下生长的适应性特征。结果显示:在水稻扬花期和渔获期,尾柄肌纤维直径稻田组均大于池塘组,并存在显著性差异 (P<0.05);在水稻扬花期和渔获期,尾柄肌纤维横截面积稻田组大于池塘组,在渔获期存在显著性差异 (P<0.05);尾柄肌纤维密度稻田组均小于池塘组,在渔获期存在显著性差异 (P<0.05);在水稻扬花期和渔获期,代谢酶中的乳酸脱氢酶 (LDH)、过氧化氢酶 (CAT) 和Ca2+-ATP酶活性稻田组均高于池塘组;在水稻扬花期,稻田组的过氧化物酶体增殖物激活受体γ辅助激活因子α (PGC-1α) 基因表达量显著高于池塘组 (P<0.05),而稻田组的腺苷酸活化蛋白激酶 (AMPK)、沉默信息调节因子1 (SIRT1) 基因表达量在水稻扬花期和渔获期均显著低于池塘组 (P<0.05)。研究显示,稻田金背鲤尾柄肌肉有更大的肌纤维直径和横截面积,尾柄肌肉呈现较高的LDH和Ca2+-ATP酶活性,这是其适应稻田浅水生活的特点;稻田金背鲤的尾柄抗阻运动会引起肌肉肥大,与其激活蛋白质合成通路有关,而池塘金背鲤通常进行长时间的耐力运动,与其线粒体生物合成有关;在水稻扬花期,稻田金背鲤PGC-1α基因表达量较高,可能与此阶段水稻开花、稻田中昆虫增多、生物多样性增加以及生物量增加有关。Abstract: Golden-backed carp (Cyprinus carpio var. Jinbei) is a common carp that has lived in rice fields for many generations through long-term natural and artificial selection. In order to promote its paddy field breeding model and provide data supports for the breeding of improved varieties by this model, we analyzed the caudal stalk muscle fibers, related metabolic enzymes and gene expressions by using histology, enzymology and molecular biology methods, and explored the adaptive characteristics of caudal stalk muscle growth under the shallow ecological conditions of rice field. The results show that the diameter of caudal stalk muscle fiber in paddy field group was larger than that in pond group at flowering stage and harvest stage with significant differences (P<0.05). The cross-section area of caudal stalk muscle fiber in paddy field group was larger than that in pond group at flowering stage and harvest stage, with significant differences at harvest stage (P<0.05), while the density of caudal stalk muscle fiber in paddy field group was smaller than that in pond group. There were significant differences at harvest stage (P<0.05). The activities of lactate dehydrogenase (LDH), catalase (CAT) and Ca2+-ATPase in metabolic enzymes were higher in paddy field group than in pond group at flowering stage and harvest stage. The expression level of peroxisome proliferation-activated receptor γ-coactivator α (PGC-1α) gene in paddy field group was significantly higher than that in pond group (P<0.05). The results reveal that the expression levels of adenylate activated protein kinase (AMPK) and silence-regulating factor 1 (SIRT1) gene in paddy field group were significantly lower than those in pond group at flowering stage and harvest stage (P<0.05). The resistance movement of the caudal stalk of golden-backed carp in rice field caused muscle hypertrophy, which was related with the activation of protein synthesis pathway, while its endurance exercise, was related with the mitochondrial biosynthesis. The higher PGC-1α expression level of golden-backed carp in rice flowering stage may be related with the increase of rice flowering, insects, biodiversity and biomass.
-
图 2 稻田和池塘金背鲤尾柄肌纤维 HE 染色图
注:a. 稻花前稻田金背鲤尾柄肌纤维 (200×);b. 水稻扬花期稻田金背鲤尾柄肌纤维 (200×);c. 水稻扬花期稻田金背鲤尾柄肌纤维 (400×); d. 渔获期稻田金背鲤尾柄肌纤维 (200×);e. 水稻扬花同时期池塘金背鲤尾柄肌纤维 (200×);f. 渔获期池塘金背鲤尾柄肌纤维 (200×)。
Figure 2. HE staining of muscle fibers of caudal stalk of golden-backed carps in paddy fields and ponds
Note: a. Caudal stalk muscle fibers of golden-backed carp before rice flower (200×); b. Caudal stalk muscle fibers (200×) of golden-backed carp in rice field during flowering period; c. Caudal stalk muscle fibers (400×) of golden-backed carp in rice field during flowering period; d. Caudal stalk muscle fibers (200×) of golden-backed carp in paddy field; e. Caudal stalk muscle fibers of pond golden-backed carp (200×) at the same period of rice flowering; f. Caudal stalk muscle fibers of pond golden-backed carp (200×) at the harvest stage.
图 3 稻田和池塘金背鲤生长过程中主要代谢酶活性变化
注:1. 稻花前期;2. 水稻扬花期;3. 渔获期;每个数据表示3个重复;不同的小写字母表示相同组别 (稻田组) 不同采样时间点的酶活性差异显著 (P<0.05),****表示不同处理组在相同采样点上有极显著性差异 (P<0.01)。
Figure 3. Changes of main metabolic enzymes during growth of golden-backed carp in paddy fields and ponds
Notes: 1. Before rice flowering period; 2. Flowering period of rice; 3. Harvest period; Values are $ \overline { X}\pm { \rm {SD}}$1 (n=3). Different letters indicate a significant difference (P<0.05) among different growth periods in rice field; ****. Extremely significant difference (P<0.01) between the two groups at the same sampling site.
图 4 稻田和池塘养殖的金背鲤不同生长时期 AMPK、SIRT1 和 PGC-1α 基因的相对表达量
注:1. 稻花前期;2. 水稻扬花期;3. 渔获期;每个数据表示 3 个重复;不同的小写字母表示稻田组在不同生长时间点基因表达量差异显著 (P<0.05),而*表示不同处理组在相同采样点上有显著差异 (P<0.05)。
Figure 4. Relative expression of AMPK, SIRT1 and PGC-1α gene in different growth periods of golden-backed carps in paddy field and pond
Note: 1. Before flowering period; 2. Flowering period of rice; 3. Harvest period. Values are Mean±SD (n=3). Different letters indicate significant differences in paddy field in each growth period (P<0.05).*. Significant differences between the two groups at the same sampling time (P<0.05).
表 1 本实验所需引物
Table 1. Primers for this study
引物
Primer序列 (5'—3')
Sequence (5'–3')长度
Length/bp温度
Temperature/℃应用
ApplicationAMPK-F CGGAGACACACTAGGAGTGG 141 60 qPCR AMPK-R ATCTCGCGTCGAATCTTCCC 141 60 qPCR PGC-1α-F TCTCCATACTCCCGCTCCG 230 60 qPCR PGC-1α-R TCAGCCCTCTCACATTCTCGTT 230 60 qPCR SIRT1-F GGCAGCTATGGTCAGCCTAC 135 60 qPCR SIRT1-R TGCTTGAGGACAGGACTTACAC 135 60 qPCR β-actin-F AAAACCAACCATGTGCGACG 238 60 qPCR β-actin-R CCGTGCTCAATGGGGTACTT 238 60 qPCR 表 2 金背鲤尾柄肌纤维直径
Table 2. Muscle fiber diameter of caudal stalk of golden-backed carps μm
采样时期
Sampling
period稻田实验组
Paddy field
experimental group池塘对照组
Pond control
group稻花前期
Before flowering period31.88±4.41a 31.88±4.41 水稻扬花期
Flowering period54.88±10.31b* 41.68±4.42 渔获期
Harvest period62.98±4.92bc* 46.00±2.69 注:不同上标字母表示数据间有显著性差异 (P<0.05);*表示同一行数据间有显著性差异 (P<0.05)。稻花前期指同一批幼鱼未投放到稻田和池塘阶段。后表同此。 Note: Different superscript letters indicate significant differences between the data (P<0.05); *. Significant difference between the data within the same row (P<0.05). Before flowering period indicates the stage when the same batch of juvenile fish had not been released into paddy fields and ponds yet. The same case in the following tables. 表 3 金背鲤尾柄肌纤维横截面积
Table 3. Cross-sectional area of muscle fibers of caudal stalk of golden-backed carps μm2
采样时期
Sampling
period稻田实验组
Paddy field
experimental group池塘对照组
Pond control
group稻花前期
Before flowering period1 065.99±549.36a 1 065.99±549.36 水稻扬花期
Flowering period1 711.76±748.25a 1 327.79±600.17 渔获期
Harvest period2 845.43±70.82b* 1 360.62±393.08 表 4 金背鲤尾柄肌纤维密度
Table 4. Muscle fiber density of caudal stalk of golden-backed carps 根·mm−2
采样时期
Sampling
period稻田实验组
Paddy field
experimental group池塘对照组
Pond control
group稻花前期
Before flowering period1252.56±916.11 1252.56±916.11 水稻扬花期
Flowering period702.45±406.78 845.10±306.00 渔获期
Harvest period351.59±8.88* 781.40±244.04 -
[1] 周伟, 刘应聪. 云南绿汁江鱼类的形态特征及其适应意义[J]. 四川动物, 1999(1): 10-13. [2] 沈伟良, 吴雄飞, 申屠基康, 等. 同饵料及养殖环境对大黄鱼(Larimichthys crocea)形态差异的影响[J]. 渔业科学进展, 2017, 38(6): 70-77. [3] 孟庆闻, 缪学祖, 俞泰济. 鱼类学: 形态·分类[M]. 上海: 科学技术出版社, 1989: 8-14. [4] 郭梁, 任伟征, 胡亮亮, 等. 传统稻鱼系统中“田鲤鱼”的形态特征[J]. 应用生态学报, 2017, 28(2): 665-672. [5] 刘雨婷, 黄世玉, 李榴佳, 等. 池塘与稻田养殖鲤鱼生物学指数和肌肉营养价值的比较[J]. 中国农学通报, 2022, 38(4): 159-164. [6] MOODY E K, LOZANO-VILANO M L. Predation drives morphological convergence in the Gambusia panuco species group among lotic and lentic habitats[J]. J Evol Biol. 2018, 31(4): 491-501. [7] 孙冰, 侯艳茹, 徐丽媛, 等. 不同饲养方式下苏尼特羊肌纤维组成和羊肉品质的比较研究[J]. 食品工业科技, 2022, 43(11): 96-103. [8] 文超越, 段叶辉, 李颖慧, 等. 能量感应网络AMPK/SIRT1/PGC-lα对骨骼肌纤维类型转化调节[J]. 动物营养学报, 2016, 28(1): 57-63. [9] 沈文清, 何标, 丁树哲. AMPK——运动调控骨骼肌糖脂代谢的重要激酶[J]. 生命科学, 2022, 34(6): 631-643. [10] CANTÓ C, AUWERX J. PGC-1alpha, SIRT1 and AMPK, an ener-gy sensing network that controls energy expenditure[J]. Curr Opin Lipidol, 2009, 20(2): 98-105. doi: 10.1097/MOL.0b013e328328d0a4 [11] JI D, SU X, YAO J J, et al. Genetic diversity and genetic differentiation of populations of golden-backed carp (Cyprinus carpio var. Jinbei) in traditional rice fields in Guizhou, China[J]. Animals (Basel), 2022, 12(11): 1377. [12] 闫冠杰, 曹振东, 彭姜岚, 等. 运动锻炼对鲤鱼幼鱼形态参数的影响[J]. 重庆师范大学学报(自然科学版), 2011, 28(3): 18-21. [13] 纪达, 许劲松, 姚俊杰, 等. 贵州省5个金背鲤 (Cyprinus carpio var. Jinbei) 地理种群的遗传多样性与遗传结构分析[J]. 水产学杂志, 2022, 35(5): 8-17. [14] 曾宪文, 余长生, 吴正武, 等. 水稻—金背鲤共生模式与技术[J]. 作物研究, 2022, 36(2): 176-179. doi: 10.16848/j.cnki.issn.1001-5280.2022.02.16 [15] 王伟, 杨又兵, 曾珍珍, 等. 两个黄河鲤鱼群体肌纤维特性及肌肉营养成分分析[J]. 黑龙江畜牧兽医, 2017(11): 239-243, 299. doi: 10.13881/j.cnki.hljxmsy.2017.1007 [16] NISHIMURA A, SUGITA M, KATO K, et al. Hypoxia increases muscle hypertrophy induced by resistance training[J]. Int J Sports Physiol Perform, 2010, 5(4): 497-508. doi: 10.1123/ijspp.5.4.497 [17] 解长青. 肌纤维类型与运动训练[J]. 南京体育学院学报(自然科学版), 2012, 11(2): 34-35. doi: 10.15877/j.cnki.nsin.2012.02.004 [18] 李凤杰. 不同营养状态下南方鲇幼鱼大侧肌和心肌的适应性变化研究[D]. 重庆: 西南大学, 2012: 27-31. [19] YAN G J, HE X K, CAO Z D, et al. Effects of fasting and feeding on the fast-start swimming performance of southern catfish Silurus meridionalis[J]. J Fish Biol, 2015, 86(2): 605-614. doi: 10.1111/jfb.12595 [20] 乔云贵, 黄洪亮, 黄妙芬, 等. 不同淡水鱼类游泳速度的初步研究[J]. 湖南农业科学, 2012(15): 116-119. doi: 10.3969/j.issn.1006-060X.2012.15.038 [21] 朱峰磊, 张敬敬, 龙静, 等. 游泳加速模式对南方鲇和团头鲂运动后代谢恢复的影响[J]. 淡水渔业, 2020, 50(3): 65-71. doi: 10.3969/j.issn.1000-6907.2020.03.009 [22] 吕敏, 甘晖, 陈田聪, 等. 瓦氏黄颡鱼在稻田和池塘养殖中的生长性能和肌肉品质比较[J]. 水产学杂志, 2022, 35(1): 75-81. doi: 10.3969/j.issn.1005-3832.2022.01.013 [23] 明俊超, 董在杰, 梁政远, 等. 6个不同鲤群体的形态差异分析[J]. 广东海洋大学学报, 2009, 29(6): 1-6. doi: 10.3969/j.issn.1673-9159.2009.06.001 [24] 余科, 李长贵, 安苗, 等. 从江稻田鲤与国内7种鲤的形态学差异研究[J]. 贵州畜牧兽医, 2022, 46(3): 11-16. [25] 谭春明, 赵旺, 马振华, 等. 红腹海参消化道指标、组织学和酶活性的季节变化[J]. 南方水产科学, 2022, 18(5): 39-45. [26] 李丹丹, 陈丕茂, 朱爱意, 等. 黑鲷幼鱼力竭运动后代谢酶活性的恢复水平[J]. 南方水产科学, 2018, 14(6): 59-65. [27] GRUNOW B, STANGE K, BOCHERT R, et al. Histological and biochemical evaluation of skeletal muscle in the two salmonid species Coregonus maraena and Oncorhynchus mykiss[J]. PLoS One, 2021, 16(8): e0255062. doi: 10.1371/journal.pone.0255062 [28] 沈德功. 人体肌纤维类型与运动训练[J]. 西藏体育, 1996(1): 49-52. [29] 刘明镜, 王志坚. 斑马鱼对无氧运动训练的适应性变化[J]. 动物学研究, 2013, 34(3): 190-195. [30] 夏伟. 运动训练对鲤鱼 (Cyprinus carpio) 幼鱼游泳能力的影响及其代谢机制探讨[D]. 重庆: 重庆师范大学, 2012: 1-9. [31] 宋洪建, 刘伟, 王继隆, 等. 锶对大麻哈鱼稚鱼生长发育及肌肉ATP酶活性的影响[J]. 水产学杂志, 2013, 26(4): 23-28. [32] 殷中专, 田元勇, 徐昙烨, 等. 鱼贝类肌肉品质变化与能量代谢关联[J]. 水产学报, 2022, 46(7): 1143-1153. [33] MEIS L D. Energy interconversion by the sarcoplasmic reticulum Ca2+-ATPase: ATP hydrolysis, Ca2+ transport, ATP synthesis and heat production[J]. An Acad Bras Cienc, 2000, 72(3): 365-379. doi: 10.1590/S0001-37652000000300010 [34] 李春艳, 肖艳芬. 抗阻/耐力训练诱导骨骼肌分子响应的比较研究[J]. 湖北体育科技, 2010, 29(4): 427-429. [35] VISSING K, MCGEE S, FARUP J, et al. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals[J]. Scand J Med Sci Sports, 2013, 23(3): 355-366. doi: 10.1111/j.1600-0838.2011.01395.x [36] 田浩楠, 汪军, 张锋, 等. 有氧和力量同期训练对骨骼肌肥大的影响及其分子机制[J]. 中国体育科技, 2022, 58(10): 81-89. [37] SPAULDING H R, YAN Z. AMPK and the adaptation to exercise[J]. Annu Rev Physiol, 2022, 84: 209-227. doi: 10.1146/annurev-physiol-060721-095517 [38] 王宇, 袁倩, 王柏辉, 等. 腺苷酸活化蛋白激酶活性及其级联效应对肉品品质的影响研究进展[J]. 食品科学, 2018, 39(17): 298-304. doi: 10.7506/spkx1002-6630-201817047 [39] BAAR K. Training for endurance and strength: lessons from cell signaling[J]. Med Sci Sports Exerc, 2006, 38(11): 1939-1944. doi: 10.1249/01.mss.0000233799.62153.19 [40] CANTÓ C, GERHART-HINES Z, FEIGE J N, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity[J]. Nature, 2009, 458(7241): 1056-1060. doi: 10.1038/nature07813 [41] RUDERMAN N B, XU X J, NELSON L, et al. AMPK and SIRT1: a long-standing partnership?[J]. Am J Physiol Endocrinol Metab, 2010, 298(4): 751-760. doi: 10.1152/ajpendo.00745.2009 -