Photophysiological responses of Gracilariopsis bailinae to temperature and light intensity
-
摘要: 大型海藻对温度和光照强度的适应存在种属差异。异枝江蓠 (Gracilariopsis bailinae) 是一种喜高温的大型海藻,为科学指导该藻在海水养殖、海洋生态修复等方面的应用,利用叶绿素荧光技术,结合藻体光合色素含量和生长率变化,探究了异枝江蓠对温度和光照强度的光合生理响应特征。测定了15、20、25、30、35 ℃和1 000、3 000、6 000、9 000 lx条件下,异枝江蓠的特定生长率 (SGR)、光合色素含量 [叶绿素a (Chl a)、类胡萝卜素 (Car)、藻胆蛋白] 及叶绿素荧光参数 [PSII最大光化学效率 (Fv/Fm)、实际光能转化效率 (ΦPSII)、电子传递速率 (ETR)、光化学淬灭 (qP)、非光化学淬灭 (NPQ)] 的变化。结果显示,温度和光照强度对上述相关指标 (除Car和Fv/Fm) 的影响具有极显著的交互作用 (P<0.01);温度升高显著增加了异枝江蓠的SGR、藻胆蛋白含量以及叶绿素荧光参数值 (P<0.05);高光照显著降低了异枝江蓠的光合色素含量以及Fv/Fm、ΦPSII、ETR和qP值,但NPQ和SGR却显著上升 (P<0.05)。结果表明,异枝江蓠是一种喜高温的大型海藻,通过增加藻胆蛋白含量可提高其在高温条件下的生存能力,同时,通过增加热耗散和减少光合色素的合成,可实现藻体在高光下的光保护。Abstract: There are species differences in the adaptation of macroalgae to temperature and light intensity. Gracilariopsis bailinae is a large alga that likes high temperature. In order to scientifically guide its application in mariculture and marine ecological restoration, we investigated the photosynthetic physiological responses characteristics of G. bailinae to temperature and light intensity by using chlorophyll fluorescence technology, combined with changes in photosynthetic pigment content and growth rate of algae. We measured various physiological parameters, including specific growth rate (SGR), photosynthetic pigments content [Chlorophyll a (Chl a), carotenoid (Car), and phycobiliprotein], and chlorophyll fluorescence parameters [Maximum photochemical efficiency of PSII (Fv/Fm), actual light conversion efficiency (ΦPSII), electron transfer rate (ETR), photochemical quenching (qP), and non-photochemical quenching (NPQ)] of G. bailinae cultured at five different temperatures (15, 20, 25, 30, 35 ℃) and four different light intensities (1 000, 3 000, 6 000, 9 000 lx). Results reveal that temperatures and light intensities had a significant interaction effect on the parameters measured, except for Car and Fv/Fm (P<0.01). The SGR, phycobiliprotein contents, and chlorophyll fluorescence parameters of G. bailinae increased significantly as temperature increased (P<0.05), whereas high light intensity treatment led to a significant decrease in photosynthetic pigments content and values of Fv/Fm, ΦPSII, ETR, and qP, but a significant increase in NPQ and SGR (P<0.05). These results indicate that G. bailinae can enhance its survival capacity under high temperature conditions by increasing the synthesis of phycobilin, and achieve photoprotection under high light conditions by increasing heat dissipation and decreasing photosynthetic pigment synthesis.
-
图 1 不同温度和光照强度下的异枝江蓠特定生长率
注:不同小写字母表示在相同温度条件下不同光照强度处理间差异显著 (P<0.05),不同大写字母表示在相同光照强度条件下不同温度处理间差异显著 (P<0.05);后图同此。
Figure 1. Specific growth rate of G. bailinae at different temperatures and light intensities
Note: Different lowercase letters indicate significant differences between different light intensity treatments under the same temperature condition (P<0.05), while different uppercase letters indicate significant differences between different temperature treatments under the same light intensity condition (P<0.05). The same case in the following figures.
表 1 温度、光照强度与异枝江蓠生长、光合色素及叶绿素荧光参数的相关性分析
Table 1. Correlation analysis between temperature and light intensity and growth, photosynthetic pigments and chlorophyll fluorescence parameters of G. bailinae
项目
Item光照强度 Light intensity/lx 温度 Temperature/℃ 1 000 3 000 6 000 9 000 15 20 25 30 35 特定生长率 SGR 0.501 0.668** 0.873** 0.889** 0.197 0.766** 0.898** 0.938** 0.958** 叶绿素 a Chl a 0.242 −0.195 −0.704** −0.727** −0.130 −0.782** −0.910** −0.935** −0.950** 类胡萝卜素 Car −0.042 0.041 −0.188 −0.215 −0.310 −0.736** −0.910** −0.101 −0.730** 藻红蛋白 PE 0.978** 0.948** 0.886** 0.842** 0.011 −0.849** −0.910** −0.937** −0.950** 藻蓝蛋白 PC 0.951** 0.969** 0.992** 0.923** −0.130 −0.882** −0.920** −0.947** −0.950** PSII最大光化学效率 Fv/Fm 0.804** 0.745** 0.752** 0.792** −0.710** −0.799** −0.420 −0.532 −0.230 实际光能转化效率 ΦPSII 0.885** 0.776** 0.878** 0.895** −0.910** −0.853** −0.940** −0.913** −0.790** 电子传递速率 ETR 0.859** 0.537* 0.784** 0.890** −0.910** −0.902** −0.900** −0.771** −0.600* 光化学淬灭系数 qP 0.918** 0.866** 0.912** 0.929** −0.920** −0.835** −0.920** −0.755** −0.760** 非光化学淬灭系数 NPQ 0.007 0.679** 0.952** 0.848** 0.912** 0.936** 0.937** 0.966** 0.902** 注:** 表示在0.01水平 (双尾) 极显著相关,* 表示在0.05水平 (双尾) 显著相关。 Note: **. Extremely significant correlation at 0.01 level (Two-tailed); *. A significant correlation at 0.05 level (Two-tailed). 表 2 温度和光照强度对异枝江特定生长率的双因素方差分析
Table 2. Two-way ANOVA analysis for effects of temperature and light intensity on specific growth rate of G. bailinae
变异来源
Source of variation自由度
DFF 显著性
Sig.温度
Temperature4 802.800 <0.000 1 光照强度
Light intensity3 233.200 <0.000 1 温度×光照强度
Temperature×Light intensity12 37.810 <0.000 1 残差
Residual40 表 3 温度和光照强度对异枝江蓠光合色素的双因素方差分析
Table 3. Two-way ANOVA analysis for effects of temperature and light intensity on photosynthetic pigments of G. bailinae
光合色素 Photosynthetic pigment 变异来源 Source of variation 自由度 DF F 显著性 Sig. 叶绿素 a Chl a 温度 Temperature 4 36.650 <0.000 1 光照强度 Light intensity 3 53.480 <0.000 1 温度×光照强度 Temperature×Light intensity 12 4.415 0.000 2 残差 Residual 40 类胡萝卜素 Car 温度 Temperature 4 23.850 <0.000 1 光照强度 Light intensity 3 14.830 <0.000 1 温度×光照强度 Temperature×Light intensity 12 1.490 0.168 4 残差 Residual 40 藻红蛋白 PE 温度 Temperature 4 448.300 <0.000 1 光照强度 Light intensity 3 219.400 <0.000 1 温度×光照强度 Temperature×Light intensity 12 25.370 <0.000 1 残差 Residual 40 藻蓝蛋白 PC 温度 Temperature 4 356.000 <0.000 1 光照强度 Light intensity 3 131.500 <0.000 1 温度×光照强度 Temperature×Light intensity 12 14.400 <0.000 1 残差 Residual 40 表 4 温度和光照强度对异枝江蓠 PSII 光化学效率参数的双因素方差分析
Table 4. Two-way ANOVA analysis for effects of temperature and light intensity on photochemical efficiency parameters of PSII of G. bailinae
光化学效率参数
Photochemical efficiency parameter变异来源
Source of variation自由度
DFF 显著性
Sig.PSII 最大光化学效率 Fv/Fm 温度 Temperature 4 290.800 <0.000 1 光照强度 Light intensity 3 10.380 <0.000 1 温度×光照强度 Temperature×Light intensity 12 1.864 0.069 9 残差 Residual 40 实际光能转化效率 ΦPSII 温度 Temperature 4 61.560 <0.000 1 光照强度 Light intensity 3 106.000 <0.000 1 温度×光照强度 Temperature×Light intensity 12 4.071 0.000 4 残差 Residual 40 电子传递速率 ETR 温度 Temperature 4 53.820 <0.000 1 光照强度 Light intensity 3 70.460 <0.000 1 温度×光照强度 Temperature×Light intensity 12 4.001 0.000 4 残差 Residual 40 表 5 温度和光照强度对异枝江蓠荧光淬灭参数的双因素方差分析
Table 5. Two-way ANOVA analysis for effects of temperature and light intensity on fluorescence quenching parameters of G. bailinae
荧光淬灭参数
Fluorescence quenching parameter变异来源
Source of variation自由度
DFF 显著性
Sig.光化学淬灭系数 qP 温度 Temperature 4 86.340 <0.000 1 光照强度 Light intensity 3 73.660 <0.000 1 温度×光照强度 Temperature×Light intensity 12 3.471 0.001 5 残差 Residual 40 非光化学淬灭系数 NPQ 温度 Temperature 4 204.600 <0.000 1 光照强度 Light intensity 3 338.400 <0.000 1 温度×光照强度 Temperature×Light intensity 12 33.670 <0.000 1 残差 Residual 40 -
[1] 刘榆莎, 王东, 徐晓婷, 等. 温度和盐度对浒苔生长和光合生理特性的影响[J]. 水生生物学报, 2016, 40(6): 1227-1233. doi: 10.7541/2016.160 [2] 史彦江, 罗青红, 宋锋惠, 等. 高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响[J]. 应用生态学报, 2012, 23(9): 2477-2482. doi: 10.13287/j.1001-9332.2012.0342 [3] 张宝, 徐燕, 许凯, 等. 坛紫菜响应高光胁迫的分子机制[J]. 水产学报, 2022, 46(11): 2066-2075. [4] 杨宇峰, 罗洪添, 王庆, 等. 大型海藻规模栽培是增加海洋碳汇和解决近海环境问题的有效途径[J]. 中国科学院院刊, 2021, 36(3): 259-269. doi: 10.16418/j.issn.1000-3045.20210217103 [5] 付倩倩, 李航霄, 吴海龙, 等. 光强对缘管浒苔 (Ulva linza) 光合生理特性和短期温度效应的影响[J]. 海洋与湖沼, 2018, 49(5): 967-974. doi: 10.11693/hyhz20180400074 [6] 王晓艳. 不同温度和光照强度对裙带菜 (Undaria pinnatifida) 幼孢子体叶绿素荧光参数和抗氧化系统的影响[D]. 青岛: 中国海洋大学, 2015, 1-54. [7] 程晓鹏, 章守宇, 林军, 等. 海带孢子体光合活性对不同温度和光照的响应[J]. 水产学报, 2020, 44(2): 234-244. [8] 钟逸云, 杨蕴琪, 郜晓峰, 等. 盐度、温度和光照强度对针叶蕨藻的生长及光合活性的影响[J]. 热带亚热带植物学报, 2021, 29(6): 626-633. doi: 10.11926/jtsb.4378 [9] 陈伟洲, 吴文婷, 许俊宾, 等. 不同生态因子对皱紫菜生长及生理组分的影响[J]. 南方水产科学, 2013, 9(2): 14-19. doi: 10.3969/j.issn.2095-0780.2013.02.003 [10] 胡凡光, 郭萍萍, 王娟, 等. 水温、盐度、pH和光照度对龙须菜生长的影响[J]. 渔业现代化, 2013, 40(4): 23-27. doi: 10.3969/j.issn.1007-9580.2013.04.005 [11] ENDOMA L F, NUÑAL S N, TRAIFALGAR R F M, et al. Photo-bleached agar extracts from Gracilariopsis heteroclada[J]. Bot Mar, 2020, 63(6): 559-569. doi: 10.1515/bot-2020-0028 [12] ELLE B J, CORRE JR V, FELARCA K G, et al. Potential of Gracilariopsis bailiniae and Oreochromis mossambicus in improving water quality in intensive Litopenaeus vannamei tank culture[J]. AACL Bioflux, 2017, 10(5): 1309-1318. [13] HUANG B W, CUI J J, CHEN X Y, et al. Mechanism of the allelopathic effect of macroalgae Gracilaria bailiniae on Nitzschia closterium[J]. Ecotoxicol Environ Saf, 2022, 241: 113767. doi: 10.1016/j.ecoenv.2022.113767 [14] 徐聪, 徐日升, 黄博文, 等. 异枝江蓠与凡纳滨对虾室内零换水混养[J]. 广东海洋大学学报, 2021, 41(3): 131-137. doi: 10.3969/j.issn.1673-9159.2021.03.017 [15] 夏邦美. 中国海藻志第二卷: 红藻门. 第五册: 伊谷藻目 杉藻目 红皮藻目[M]. 北京: 科学出版社, 1999, 31-34. [16] 钟志海, 黄中坚, 陈伟洲. 不同环境因子对异枝江蓠的生长及生化组分的影响[J]. 渔业科学进展, 2014, 35(3): 98-104. doi: 10.11758/yykxjz.20140314 [17] YONG Y S, YONG W T L, ANTON A. Analysis of formulae for determination of seaweed growth rate[J]. J Appl Phycol, 2013, 25(6): 1831-1834. doi: 10.1007/s10811-013-0022-7 [18] WELLBURN, ALAN R. The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. J Plant Physiol, 1994, 144(3): 307-313. doi: 10.1016/S0176-1617(11)81192-2 [19] BEER S, ESHEL A. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae[J]. Mar Freshw Res, 1985, 36(6): 785-792. doi: 10.1071/MF9850785 [20] 姜宏波, 田相利, 董双林, 等. 温度和光照强度对鼠尾藻生长和生化组成的影响[J]. 应用生态学报, 2009, 20(1): 185-189. doi: 10.13287/j.1001-9332.2009.0015 [21] 郜晓峰, 刘炜, 钟逸云, 等. 不同温度对大叶藻生长与光合生理的影响[J]. 应用与环境生物学报, 2022, 28(1): 175-181. [22] 王义婧, 徐胜, 何兴元, 等. 美国薄荷 (Monarda didyma L.) 对大气增温的生理生态响应[J]. 生态环境学报, 2018, 27(12): 2217-2224. [23] MURCHIE E H, LAWSON T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications[J]. J Exp Bot, 2013, 64(13): 3983-3998. doi: 10.1093/jxb/ert208 [24] 张卫强, 黄芳芳, 甘先华, 等. 遮阴和盐分对银叶树幼苗光合特性与叶绿素荧光参数的影响[J]. 生态环境学报, 2020, 29(3): 438-446. [25] GOLTSEV V, KALAJI H, PAUNOV M, et al. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus[J]. Russ J Plant Physiol, 2016, 63(6): 869-893. doi: 10.1134/S1021443716050058 [26] MAXWELL K, JOHNSON G N. Chlorophyll fluorescence: a practical guide[J]. J Exp Bot, 2000, 51(345): 659-668. doi: 10.1093/jexbot/51.345.659 [27] MISHRA A N. Chlorophyll fluorescence: a practical approach to study ecophysiology of green plants[M]//SÁNCHEZ-MOREIRAS A M, REIGOSA M J. Advances in plant ecophysiology techniques. Cham: Springer International Publishing AG, 2018: 77-97. https://doi.org/10.1007/978-3-319-93233-05. [28] 薛娴, 许会敏, 吴鸿洋, 等. 植物光合作用循环电子传递的研究进展[J]. 植物生理学报, 2017, 53(2): 145-158. doi: 10.13592/j.cnki.ppj.2016.0432 [29] 周伟, 武卉, 黄晶晶, 等. 高浓度CO2和光周期对浒苔幼苗生长和光合生理的影响[J]. 南方水产科学, 2022, 18(5): 30-38. doi: 10.12131/20210278 [30] 陈敏, 王宁, 杨多利, 等. 隐藻藻胆蛋白的结构与能量传递功能[J]. 植物生理学报, 2015, 51(12): 2070-2082. doi: 10.13592/j.cnki.ppj.2015.0382 [31] 张文文, 郭永坚, 李俊伟, 等. 营养盐对海萝生长和藻体生化成分的影响[J]. 南方水产科学, 2016, 12(2): 30-35. doi: 10.3969/j.issn.2095-0780.2016.02.005 [32] 丁兰平, 孙国栋, 黄冰心, 等. 温度和盐度对刺枝鱼栖苔 (Acanthophora spicifera) (红藻门,松节藻科) 生长及其几种光合色素的影响[J]. 海洋与湖沼, 2013, 44(4): 913-918. -