Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)
-
摘要: 密度胁迫会对水生动物的免疫和抗氧化功能等产生负面影响。为提高拟穴青蟹 (Scylla paramamosain) 养殖产量潜力,为其养殖业发展提供理论依据,通过将拟穴青蟹置于8 只·m−2 (低密度组)、16 只·m−2 (中密度组)、32 只·m−2 (高密度组) 3种不同密度条件下养殖72 h,研究了密度对拟穴青蟹抗氧化和免疫能力的影响。抗氧化酶活结果表明:高密度组过氧化氢酶 (CAT) 和超氧化物歧化酶 (SOD) 活性均显著高于低密度和中密度组 (P<0.05),而谷胱甘肽过氧化物酶 (GSH-Px) 活性在各组之间无显著性差异;高密度组丙二醛 (MDA) 含量与低密度和中密度组相比显著升高。免疫酶活结果表明,高密度组酸性磷酸酶 (ACP)、碱性磷酸酶 (AKP) 和溶菌酶 (LZM) 活性均显著低于低密度和中密度组 (P<0.05),而中密度组ACP、AKP、LZM活性与低密度组无显著性差异。荧光定量结果显示,高密度组热休克蛋白70基因 (HSP70) 表达水平呈先降低后升高趋势,且在养殖第6—第48小时均显著低于低密度和中密度组 (P<0.05);高密度组Caspase 3基因表达水平在养殖6 h后显著升高,在第24小时达到最高后逐渐下降,但其表达水平始终显著高于低密度组 (P<0.05)。综上,高密度养殖会对拟穴青蟹造成氧化损伤,进而导致其免疫能力下降。16 只·m−2的养殖密度对拟穴青蟹抗氧化和免疫能力无显著影响。Abstract: Density stress has a negative impact on the immune and antioxidant functions of aquatic animals. In order to improve the potential production of mud crab (Scylla paramamosain) and provide a theoretical basis for its aquaculture development, we cultured the mud crabs for 72 h at three different densities: 8 ind·m−2 (Low density group), 16 ind·m−2 (Medium density group), and 32 ind·m−2 (High density group) to study the effects of density on the antioxidant and immune capacity of mud crabs. The results of antioxidant enzyme activity show that the activities of catalase (CAT) and superoxide dismutase (SOD) in the high density group were significantly higher than those in the low density and medium density groups (P<0.05), but there was no significant difference in the glutathione peroxidase (GSH-Px) activity among the groups. Additionally, the malondialdehyde (MDA) content in the high density group was significantly higher than that in the low density and medium density groups. The activities of acid phosphatase (ACP), alkaline phosphatase (AKP) and lysozyme (LZM) in the high density group were significantly lower than those in the low density and medium density groups (P<0.05), but there was no significant difference between the medium density group and the low density group. The real-time PCR results indicate that the heat shock protein 70 (HSP70) expression level in the high density group decreased first and then increased, significantly lower than that in low density and medium density groups from 6th hour to 48th hour (P<0.05). The expression level of Caspase 3 in the high density group increased significantly after 6 h and decreased gradually after reaching the maximum level at 24th hour, but was always significantly higher than that in the low density group (P<0.05). In conclusion, high density culture can cause oxidative damage, leading to the decline of immunity of mud crabs. The stock density of 16 ind·m−2 has no significant effects on the antioxidant and immune abilities of mud crabs.
-
Key words:
- Scylla paramamosain /
- Stock density /
- Immunity /
- Antioxidant capacity
-
图 1 密度对拟穴青蟹鳃组织过氧化氢酶、超氧化物歧化酶、谷胱甘肽过氧化物酶活性和丙二醛含量的影响
注:同一坐标轴上的不同小写字母表示差异显著 (P<0.05);后图同此。
Figure 1. Effect of density on activities of CAT, SOD, GSH-Px and MDA content in gill tissue of S. paramamosain
Note: Values with different lowercase letters at the same time have significant differences (P<0.05). The same case in the following figures.
表 1 实时荧光定量PCR引物
Table 1. Real-time fluorescence quantitative PCR primers
引物Primer 引物序列 (5'—3')Primer sequence (5'−3') RT-caspase 3-F ACGAAGTGAGGGGATTATGCC RT-caspase 3-R CAGCCCATCCAGCGAGC RT-HSP70-F AGGACAAGGTGAGCGAAGAGG RT-HSP70-R TTGGTGATGATGGGGTTACAGA RT-18S-F CCTCGTTCATGGGAGACAAT RT-18S-R CTAGTCGACGGATCTCCAGC -
[1] LUPATSCH I, SANTOS G A, SCHRAMA J W, et al. Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax[J]. Aquaculture, 2010, 298(3): 245-250. [2] GAO Y, HE Z L, VECTOR H, et al. Effect of stocking density on growth, oxidative stress and hsp 70 of pacific white shrimp Litopenaeus vannamei[J]. Turkish J Fish Aquat Sci, 2017, 17(5): 877-884. [3] WYBAN J A, LEE C S, SATO V T, et al. Effect of stocking density on shrimp growth rates in manure-fertilized ponds[J]. Aquaculture, 1987, 61(1): 23-32. doi: 10.1016/0044-8486(87)90334-6 [4] HENGSAWAT K, WARD F J, JARURATJAMORN P. The effect of stocking density on yield, growth and mortality of African catfish (Clarias gariepinus Burchell 1822) cultured in cages[J]. Aquaculture, 1997, 152(1): 67-76. [5] BOLASINA S, TAGAWA M, YAMASHITA Y, et al. Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus[J]. Aquaculture, 2006, 259(1): 432-443. [6] 范文浩, 方刘, 周锦, 等. 养殖密度对克氏原螯虾生长及消化酶、免疫酶活性的影响[J]. 水产科学, 2021, 40(2): 261-266. [7] 张海恩, 何玉英, 李健, 等. 密度胁迫对中国对虾幼虾生长、抗氧化系统功能及水质指标的影响[J]. 渔业科学进展, 2020, 41(2): 140-149. [8] LIU G, ZHU S M, LIU D Z, et al. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system[J]. Fish Shellfish Immunol, 2017, 67: 19-26. doi: 10.1016/j.fsi.2017.05.038 [9] 宋黎黎. 越冬暂养对中华绒螯蟹生长、生理及品质的影响[D]. 上海: 上海海洋大学, 2021: 20-26 [10] 毛振方. 池塘养殖密度对中华绒螯蟹 (Eriocheir sinensis) 生长性能和养殖水环境的影响[D]. 南昌: 南昌大学, 2019: 23-25. [11] 农业农村部渔业渔政管理局全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 22-23. [12] GUO Z X, HE J G, XU H D, et al. Pathogenicity and complete genome sequence analysis of the mud crab dicistrovirus-1[J]. Virus Res, 2013, 171(1): 8-14. doi: 10.1016/j.virusres.2012.10.002 [13] 许明珠, 张琴, 董兰芳, 等. 不同糖源对拟穴青蟹仔蟹的生长、体成分及消化酶的影响[J]. 水产科学, 2020, 39(2): 175-181. [14] 张林姿, 赵明, 张凤英, 等. 拟穴青蟹CYP302a1基因的克隆及表达模式分析[J]. 海洋渔业, 2021, 43(1): 31-41. [15] 陈小龙, 程长洪, 邓益琴, 等. 拟穴青蟹致病性副溶血弧菌分离鉴定及药敏试验[J]. 南方农业学报, 2020, 51(11): 2846-2855. [16] CHENG C H, LIU X Z, MA H L, et al. The role of caspase 3 in the mud crab (Scylla paramamosain) after Vibrio parahaemolyticus infection[J]. Fish Shellfish Immunol, 2021, 118: 213-218. doi: 10.1016/j.fsi.2021.09.010 [17] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262 [18] WANG W N, ZHOU J, WANG P, et al. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress[J]. Comp Biochem Physiol C, 2009, 150(4): 428-435. [19] 曾祥兵, 董宏标, 韦政坤, 等. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2021, 17(4): 49-57. [20] FRIDOVICH I. Superoxide dismutases: an adaptation to a paramagnetic gas[J]. J Biol Chem, 1989, 264(14): 7761-7764. doi: 10.1016/S0021-9258(18)83102-7 [21] HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cell Physiol Biochem, 2017, 44(2): 532-553. doi: 10.1159/000485089 [22] 王新. 稻蟹养殖模式下不同放养密度对中华绒螯蟹生长、营养品质及抗氧化能力的影响[D]. 长春: 吉林农业大学, 2021: 43-44. [23] 陈勇. 饲养密度对克氏原螯虾成活率和肝胰腺三种免疫酶的影响[J]. 湖北农业科学, 2016, 55(16): 4237-4240. [24] JIE Y K, CHENG C H, WANG L C, et al. Hypoxia-induced oxidative stress and transcriptome changes in the mud crab (Scylla paramamosain)[J]. Comp Biochem Physiol C, 2021, 245: 109039. [25] TSIKAS D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges[J]. Anal Biochem, 2017, 524: 13-30. doi: 10.1016/j.ab.2016.10.021 [26] 于赫男. 环境胁迫对罗氏沼虾和凡纳滨对虾行为、生长及生理活动的影响[D]. 广州: 暨南大学, 2007: 34-44. [27] 宋志飞, 温海深, 赵艳飞, 等. 流水养殖条件下养殖密度对俄罗斯鲟幼鱼非特异性免疫的影响[J]. 广西科学, 2017, 24(4): 389-395. [28] HUSSAIN S, SLIKKER W, ALI S F. Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection[J]. Neurochem Int, 1996, 29(2): 145-152. doi: 10.1016/0197-0186(95)00114-X [29] 倪金金, 王裕玉, 徐钢春, 等. 养殖密度对池塘工程化循环水养殖大口黑鲈抗氧化力、组织结构及应激基因表达的影响[J]. 中国水产科学, 2020, 27(6): 660-670. [30] 彭士明, 施兆鸿, 孙鹏, 等. 养殖密度对银鲳幼鱼生长及组织生化指标的影响[J]. 生态学杂志, 2010, 29(7): 1371-1376. [31] 王天神, 周鑫, 赵朝阳, 等. 不同温度条件下克氏原螯虾免疫酶活性变化[J]. 江苏农业科学, 2012, 40(12): 239-241. [32] 周素琴. 环境胁迫对养殖锯缘青蟹主要免疫因子的影响[D]. 青岛: 中国海洋大学, 2006: 35-40. [33] 黄永春, 郑伟刚, 黎中宝, 等. 凡纳滨对虾幼体不同培育密度对水质、仔虾生长、免疫和抗逆性能的影响[J]. 厦门大学学报 (自然科学版), 2020, 59(6): 947-953. [34] MONTERO D, IZQUIERDO M S, TORT L, et al. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles[J]. Fish Physiol Biochem, 1999, 20(1): 53-60. doi: 10.1023/A:1007719928905 [35] 刘树青, 江晓路, 牟海津, 等. 免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J]. 海洋与湖沼, 1999(3): 278-283. [36] MAGNADOTTIR B. Immunological control of fish diseases[J]. Mar Biotechnol, 2010, 12(4): 361-379. doi: 10.1007/s10126-010-9279-x [37] 黄东科. 温度、盐度、密度和饵料对波纹龙虾存活、摄食和生长的影响[D]. 湛江: 广东海洋大学, 2014: 48-49. [38] 姚成杰, 刘佳珺, 林振烔, 等. 红螯光壳螯虾Hsp70基因的特征及其在热应激下的表达[J]. 集美大学学报 (自然科学版), 2021, 26(4): 289-298. [39] LIU B L, FEI F, LI X T, et al. Effects of stocking density on stress response, innate immune parameters, and welfare of turbot (Scophthalmus maximus)[J]. Aquac Int, 2019, 27(6): 1599-1612. doi: 10.1007/s10499-019-00413-2 [40] ROBERTS R J, AGIUS C, SALIBA C, et al. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review[J]. J Fish Dis, 2010, 33(10): 789-801. doi: 10.1111/j.1365-2761.2010.01183.x [41] CHENG C H, MA H L, DENG Y Q, et al. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in the mud crab (Scylla paramamosain) induced by cadmium exposure[J]. Chemosphere, 2021, 263: 128277. doi: 10.1016/j.chemosphere.2020.128277 [42] DONG H B, ZENG X B, WANG W H, et al. Protection of teprenone against anesthetic stress in gills and liver of spotted seabass Lateolabrax maculatus[J]. Aquaculture, 2022, 557: 738333. doi: 10.1016/j.aquaculture.2022.738333 [43] LIN W, LI L, CHEN J, et al. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella)[J]. Fish Shellfish Immunol, 2018, 80: 540-545. doi: 10.1016/j.fsi.2018.06.050 -