Effects of cold stress-induced dormancy methods on life characteristics and nutritional quality indexes of Patinopecten yessoensis during anhydrous living-preservation
-
摘要: 探究虾夷扇贝 (Patinopecten yessoensis) 保活运输前的最佳诱导休眠方式,可为其保活流通提供理论依据。参考产业实际流通,采用散冰降温和急性降温和梯度降温3种低温诱导休眠方式处理虾夷扇贝,探讨了不同降温休眠方式对虾夷扇贝无水保活期的成活率、生命特征及营养品质的影响。结果表明:梯度降温组在4 ℃条件下保活3 d后的成活率为93.33%,明显高于急性降温和散冰降温组;在降温休眠过程中,散冰降温和急性降温组由于温度骤变,无法检测到规律的心电图,梯度降温组的心率呈规律性缓慢下降趋势;保活期间,各组扇贝的心率均呈下降趋势,保活3 d后,散冰降温组已无规律心率,梯度降温和急性降温组仍有规律心率;3组降温方式的缩边率和外套膜响应时间均呈逐渐上升的趋势,其中散冰降温和急性降温组的缩边率和外套膜响应时间显著高于梯度降温组,且心率与外套膜响应时间呈负相关关系;水分、粗蛋白、粗脂肪、肌糖原含量均呈下降趋势,其中对肌糖原的消耗最大,梯度降温组相较于其他组在保活期营养成分损失较少,且梯度降温组的闭壳肌在微观组织结构上排列紧密整齐,无明显断裂。研究表明,采用梯度降温诱导扇贝进入休眠或半休眠状态后开始无水保活,有利于提高活体扇贝的成活率,减少其在流通过程中营养成分的损失,进而保持活体扇贝活力,更有利于其无水保活。Abstract: Exploring the best method to induce the dormancy of scallops (Patinopecten yessoensis) before live transport can provide a theoretical basis for their survival and circulation. Referring to the actual industrial circulation, we treated the samples by three methods of natural cooling of crush ice, acute continuous cooling and gradient cooling, so as to explore the effects of different cooling and dormancy methods on the survival rate, life characteristics and nutritional quality of scallops during anhydrous living-preservation. The results show that the survival rate of the gradient cooling group was 93.33% after 3 d of keeping alive at 4 ℃, significantly higher than that of the acute and natural cooling groups. In the process of cooling dormancy, regular electrocardiogram could not be detected in the natural and acute cooling groups due to the sudden temperature change, and the heart rate in the gradient cooling group showed a regular slow decline. During the live transport, the heart rate in each group showed a decreasing trend. After 3 d of keeping alive, the irregular heart rate in the natural ice cooling group was no longer observed, while the irregular heart rate in the gradient and acute cooling groups was still observed.The edge mantle retraction ratio and the response time of all three cooling groups tended to increase gradually (Those of natural and acute cooling groups were significantly higher than those of gradient cooling groups), and the heart rate was negatively correlated with the response time of the mantle. The contents of water, crude protein, crude fat and muscle glycogen all showed a decreasing trend, and the consumption of glycogen was the largest. Less loss of nutrients before live transport was observed in the gradient cooling groups compared with the other groups. The microstructure also shows that the closed shell muscles in the gradient cooling group were closely arranged without an obvious fracture. This study indicates that inducing P. yessoensis to enter dormancy or semi-dormancy state by gradient cooling and then keeping them alive without water, is beneficial to improving the survival rate of living P. yessoensis, reducing the loss of nutrients during the live transport, and maintaining the vitality of living P. yessoensis, so it is more conducive to its anhydrous living-preservation.
-
Key words:
- Patinopecten yessoensis /
- Cold stress /
- Live transport /
- Life characteristics /
- Nutritional quality
-
图 6 梯度 (a) 和急性 (b) 降温组生命特征指标相关性热图
注:由于散冰降温组在保活第3天无规律心电图,在此不做相关性分析。
Figure 6. Heat map of correlation of vital feature indicators in gradient (a) and acute (b) cooling groups
Note: Since the natural cooling group hadan irregular electrocardiogram on the 3rd day of keeping alive, no correlation analysis is done.
图 7 不同冷胁迫方式对虾夷扇贝冰温保活期肌肉组织结构的影响 (纵切面×400)
注:a. 保活前;b. 梯度降温组;c. 急性降温组;d. 散冰降温组;BC. 降温前;AC. 降温后;黑色箭头指示肌间间隙变化情况,红色箭头指示肌纤维断裂变化情况。
Figure 7. Effect of different cold stress methods on P. yessoensis during keep alive period at ice temperature (Longitudinal sections×400)
Note: a. Before keeping alive; b. Gradient cooling group; c. Acute cooling group; d. Natural cooling of crush ice group; BC. Before cooling; AC. After cooling; black arrows indicate changes in the intermuscular space, and red arrows indicate changes in muscle fiber rupture.
表 1 不同温度下虾夷扇贝活动状态
Table 1. Status of P. yessoensis at different temperatures
温度
Temperature/℃成活率
Survival rate/%目测现象
Visual inspection phenomenon10 100 双壳自然张开,外套膜眼点清晰,腮丝分明,触须自然伸出,轻触迅速闭壳,闭壳力度大,有跳跃逃逸滤水行为 5 100 部分双壳微张,部分闭合,部分可看到外套膜眼点,不见腮丝、触须,轻触部分无反应,部分缓慢闭壳,闭壳力度小,无跳跃逃逸行为,部分有滤水行为 3 100 大部分双壳紧闭,少部分壳微开,玻棒敲击缓慢闭壳,离水后10 min内可正常开壳闭壳 1 100 双壳紧闭,玻棒敲击无反应,置于15 ℃海水约15 min可缓慢开壳闭壳 0 100 双壳紧闭,玻棒敲击无反应,置于15 ℃海水中约2 h恢复正常开壳闭壳 −1 100 双壳紧闭,玻棒敲击无反应,扇贝边缘及外壳有微冻现象,置于15 ℃暂养约3 h部分扇贝壳微开 −2 80 双壳紧闭,玻棒敲击无反应,扇贝边缘及外壳出现冰膜,将部分扇贝开壳,发现外套膜有微冻现象,其余扇贝置于15 ℃海水中暂养3 h部分壳微张,轻触缓慢闭壳,有部分扇贝死亡 表 2 冷胁迫休眠诱导方式对虾夷扇贝保活期间心率的影响
Table 2. Effect of cold stress on heart rate of P. yessoensis during keep alive period
次·min−1 冷胁迫方式
Cold stress降温前
Before cooling保活1 d
Keep alive for 1 d保活2 d
Keep alive for 2 d保活3 d
Keep alive for 3 d散冰降温 Natural cooling of crush ice 18.39±0.3 22.26±0.17b 21.55±0.23b — 急性降温 Acute cooling 27.18±0.37a 24.6±0.91a 21.23±0.17b 梯度降温 Gradient cooling 26.17±2.47a 25.89±1.94a 22.10±1.09a 注:同列不同上标字母表示组间有显著性差异 (P<0.05);表3同此。 Note: Different superscript letters indicate significant difference among the groups (P<0.05). The same case in Table 3. 表 3 冷胁迫休眠诱导方式对虾夷扇贝保活期间心脏振幅的影响
Table 3. Effect of cold stress on cardiac amplitude of P. yessoensis during keep alive period
V 冷胁迫方式
Cold stress降温前
Before cooling保活1 d
Keep alive for 1 d保活2 d
Keep alive for 2 d保活3 d
Keep alive for 3 d散冰降温 Natural cooling of crush ice 1.59±0.1 1.63±0.00a 1.59±0.02a — 急性降温 Acute cooling 1.61±0.02a 1.58±0.00a 1.60±0.01a 梯度降温 Gradient cooling 1.58±0.00b 1.52±0.00b 1.53±0.01b 注:“—”代表无规律的心电图。 Note: "—" represents irregular electrocardiogram. 表 4 保活期内活品虾夷扇贝的活力等级
Table 4. Vitality levels of P. yessoensis during keep alive period
等级
Grade心率
Heart rate/(次·min−1)外套膜响应时间
Mantle response time/s一级 First rate 25~27 0~2 二级 Second rate 22~24 3~5 三级 Third rate 20~23 6~8 四级 Fourth rate 无规律 9~11 五级 Fifth rate 无规律 >15 表 5 冷胁迫方式对虾夷扇贝保活期间主要营养物质的影响
Table 5. Effect of cold stress on main nutrients of P. yessoensis during keep alive period
组别
Group水分质量分数
Moisture mass
fraction/%粗蛋白质量分数
Crude protein
mass fraction/%粗脂肪质量分数
Crude fat mass
fraction/%肌糖原质量分数
Muscle glycogen
mass fraction/(mg·g−1)肌乳酸质量摩尔浓度
Lactate molality/
(mmol·g−1)降温前
Before cooling69.24±0.61a 18.49±0.69a 2.88±0.15a 19.33±0.17a 6.53±0.38c 降温后
After cooling散冰组 69.06±0.39a 18.08±0.78a 2.37±0.59a 17.61±0.34b 12.37±0.59a 急性组 69.90±0.62a 18.46±0.50a 2.13±0.09a 17.51±0.42b 10.46±0.56b 梯度组 70.30±0.68a 18.64±0.53a 2.29±0.15a 18.92±0.27a 9.62±0.42b 保活3 d
Keep alive for 3 d散冰组 67.13±1.00a 13.46±0.59b 1.39±0.34b 14.56±0.31a 17.52±0.48a 急性组 62.91±0.58b 15.48±0.92ab 1.46±0.07b 15.82±0.41b 13.75±0.72b 梯度组 63.79±0.49b 16.91±1.23a 1.88±0.21a 17.30±0.49c 12.23±0.12c 注:同列中不同字母间存在显著性差异(P<0.05)。 Note: Values with different letters within the same column indicate significant difference (P<0.05). -
[1] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021 中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2021: 17-20. [2] CHEN L, SHI H, ZHANG X, et al. The effect of depuration salinity on the survival, nutritional composition, biochemical responses and proteome of Pacific oyster (Crassostrea gigas) during anhydrous living-preservation[J]. Food Control, 2022, 138: 108977. doi: 10.1016/j.foodcont.2022.108977 [3] CHEN S Q, ZHANG C, XIONG Y F, et al. A GC-MS-based metabolomics investigation on scallop (Chlamys farreri) during semi-anhydrous living-preservation[J]. Innov Food Sci Emerg Technol, 2015, 31: 185-195. doi: 10.1016/j.ifset.2015.07.003 [4] XU T Y, LI Y X, TIAN Y T, et al. Effects of post-harvest hypoxic stress on post-landing recovery of live scallops (Mizuhopecten yessoensis) revealed by untargeted metabolomics based on UPLC-Q-TOF-MS[J]. Food Control, 2021, 123: 107671. doi: 10.1016/j.foodcont.2020.107671 [5] ZAMORA L N, RAGG N L C, HILTON Z, et al. Emersion survival manipulation in GreenshellTM mussels (Perna canaliculus): implications for the extension of live mussels' shelf-life[J]. Aquaculture, 2019, 500: 597-606. doi: 10.1016/j.aquaculture.2018.10.057 [6] 赵前, 周进, 刘俊荣, 等. 水产品鲜活品质评价体系研究进展[J]. 大连海洋大学学报, 2021, 36(4): 706-716. doi: 10.16535/j.cnki.dlhyxb.2020-248 [7] DEPLEDGE M H, ANDERSEN B B. A computer-aided physiological monitoring system for continuous, long-term recording of cardiac activity in selected invertebrates[J]. Comp Biochem Physiol A, 1990, 96(4): 473-477. doi: 10.1016/0300-9629(90)90664-E [8] YU F, WU Y Y, SHEN Y W, et al. Heat adhesion duration: a new high-throughput abalone thermal tolerance assessment method[J]. Aquaculture, 2021, 545: 737226. doi: 10.1016/j.aquaculture.2021.737226 [9] CHEN N, SHEN Y W, YU F, et al. A new indicator of hypoxia tolerance in abalone, developed based on heart rate fluctuations[J]. Aquaculture, 2020, 519: 734903. doi: 10.1016/j.aquaculture.2019.734903 [10] RANA M, RAHMAN A, HUGO D, et al. Investigating data-driven approaches to understand the interaction between water quality and physiological response of sentinel oysters in natural environment[J]. Comput Electron Agric, 2020, 175: 105545. doi: 10.1016/j.compag.2020.105545 [11] XING Q, WANG J, HU L P, et al. Seasonal variation of the thermal tolerance indicator ABT and the development of a rapid detection method in scallop Chlamys farreri[J]. Aquaculture, 2021, 531: 735960. doi: 10.1016/j.aquaculture.2020.735960 [12] 林恒宗, 高加龙, 梁志源, 等. 冷胁迫方式对太平洋牡蛎无水保活期氧化应激及能量消耗的影响[J]. 广东海洋大学学报, 2022, 42(2): 95-103. doi: 10.3969/j.issn.1673-9159.2022.02.012 [13] BAKHMET I, ARISTOV D, MARCHENKO J, et al. Handling the heat: changes in the heart rate of two congeneric blue mussel species and their hybrids in response to water temperature[J]. J Sea Res, 2022, 185: 102218. doi: 10.1016/j.seares.2022.102218 [14] CHEN X L, LYU M, GAN H, et al. Impact of chitosan-based coatings on myofibrillar protein denaturation, muscle microstructure and lipid oxidation of oyster (Crassostrea hongkongensis) during 0 degrees C storage[J]. J Aquat Food Prod Technol, 2020, 29(10): 1001-1012. doi: 10.1080/10498850.2020.1828525 [15] 李亚烜, 刘俊荣, 周进, 等. 基于束缚的胁迫调控对潜水采捕虾夷扇贝活品贮运稳定性的影响[J]. 水产学报, 2022, 46(4): 605-615. [16] 徐德峰 , 吴嘉鑫 , 孙力军 , 等. 急冷与空气暴露联合胁迫对凡纳滨对虾生理代谢影响[J]. 广东海洋大学学报, 2022, 42(1): 20-28. doi: 10.3969/j.issn.1673-9159.2022.01.004 [17] PENG L, YOU J, WANG L, et al. Insight into the mechanism on texture change of Wuchang bream muscle during live transportation using a UPLC-QTOF-MS based metabolomics method[J]. Food Chem, 2023, 398: 133796. doi: 10.1016/j.foodchem.2022.133796 [18] 胡凌威, 孙长森, 董迎辉, 等. 缢蛏 (Sinonovacula constricta)心率Arrhenius拐点温度(ABT)及其与生长性状相关和通径分析[J]. 海洋与湖沼, 2021, 52(5): 1265-1272. doi: 10.11693/hyhz20210200039 [19] ALTER K, ANDREWARTHA S J, MORASH A J, et al. Hybrid abalone are more robust to multi-stressor environments than pure parental species[J]. Aquaculture, 2017, 478: 25-34. doi: 10.1016/j.aquaculture.2017.04.035 [20] GHAFFARI H, WANG W, LI A, et al. Thermotolerance divergence revealed by the physiological and molecular responses in two oyster subspecies of Crassostrea gigas in China[J]. Front Physiol, 2019, 10: 01137. doi: 10.3389/fphys.2019.01137 [21] ZHANG P F, ZHAO T, ZHOU L, et al. Thermal tolerance traits of the undulated surf clam Paphia undulata based on heart rate and physiological energetics[J]. Aquaculture, 2019, 498: 343-350. doi: 10.1016/j.aquaculture.2018.08.037 [22] 刘超, 吴富村, 林思恒, 等. 高温刺激导致虾夷扇贝死亡因素的探究[J]. 海洋科学, 2016, 40(11): 91-98. doi: 10.11759/hykx20151008001 [23] LIANG S, YOU W W, LUO X, et al. Cardiac and respiratory metabolic analysis of low-temperature tolerance in two geographic genotypes of Haliotis diversicolor and the hybrid[J]. Aquac Rep, 2021, 21: 100869. doi: 10.1016/j.aqrep.2021.100869 [24] DOMNIK N J, POLYMEROPOULOS E T, ELLIOTT N G, et al. Automated non-invasive video-microscopy of oyster spat heart rate during acute temperature change: impact of acclimation temperature[J]. Front Physiol, 2016, 7: 00236. [25] XING Q, ZHANG L L, LI Y Q, et al. Development of novel cardiac indices and assessment of factors affecting cardiac activity in a bivalve mollusc Chlamys farreri[J]. Front Physiol, 2019, 10: 00293. doi: 10.3389/fphys.2019.00293 [26] HAO Y, SUN C Y, RONG Y, et al. Circulatory and metabolic physiology disorder in different organs of the subtropical scallop species Chlamys nobilis under thermal and hypoxia stress, revealed by doppler ultrasonography technique[J]. Front Mar Sci, 2022, 9: 880112. doi: 10.3389/fmars.2022.880112 [27] 林恒宗, 高加龙, 梁志源, 等. 暂养净化及无水保活中太平洋牡蛎活力品质与呈味物质分析[J]. 食品科学, 2023: 1-12. [28] BI S, XUE C H, SUN C, et al. Impact of transportation and rehydration strategies on the physiological responses of clams (Ruditapes philippinarum)[J]. Aquac Rep, 2022, 22: 100976. doi: 10.1016/j.aqrep.2021.100976 [29] 陈文秀, 欧阳杰, 徐文其, 等. 贮藏条件对活品虾夷扇贝营养及品质的影响[J]. 渔业现代化, 2019, 46(6): 83-89. [30] 闫丽新, 田元勇, 姜明慧, 等. 无水运输—湿藏销售中虾夷扇贝活力和呈味特性变化[J]. 水产科学, 2022, 41(1): 44-51. -