Spatial heterogeneity of relationship between distribution of Uroteuthis chinensis and marine environment in offshore waters of northern South China Sea
-
摘要: 头足类是最具开发潜力的渔业种群之一,然而其资源易受环境变化影响,复杂的交互作用致使二者空间关系呈现非均一性。中国枪乌贼 (Uroteuthis chinensis) 是南海北部近海重要的经济物种,且在渔业群落结构中占据优势种地位,故正确理解与掌握该物种资源-环境关系的空间特征,有助于该资源的保护与利用。基于南海北部近海2014年夏季的渔业资源调查数据,构建了地理权重回归模型 (Geographical weighted regression, GWR),探索该海域中国枪乌贼的资源分布与海洋环境关系的空间特征,阐述主要影响因子。模型评价指标结果表明,GWR的最小赤池信息准则 (Akaike Information Criterion, AIC) 和校正决定系数 (Adjusted R-Squared,
$R_{\rm{adj}}^2 $ ) 分别为224.81和0.46,均优于传统的全局线性回归模型,因此前者能更真实地反映中国枪乌贼资源-环境关系的空间异质性。整个海域,叶绿素a对资源的影响为正负效应共存,而其余环境变量与资源均为正效应关系。资源分布在广东近海主要受海表盐度、海表温度和叶绿素a影响,后两者分别为粤西和珠江口—粤东海域的首要影响因子,而北部湾则仅受水深的影响显著。在主导环境因子影响下,中国枪乌贼资源密度区域分化特征明显,尤其是珠江口—粤东海域与其他海域差异显著。地理权重回归模型可为探索和理解复杂头足类资源与环境关系的局部特征提供有效手段。Abstract: Cephalopods are one of the most potienial fishery species but are vulnerable to environment changes, and their complex interactions lead to the spatial heterogeneity in resource-environment relationship. Uroteuthis chinensis is an important economic species in the offshore waters of northern South China Sea, occuping a dominant position in the fishery community structure. Therefore, understanding the spatial characteristics of the resource-environment relationship is beneficial to its development, utilization and protection. Based on the fishery resources survey data in the offshore waters of northern South China Sea in summer of 2014, we established a geographically weighted regression (GWR) model to explore the spatial characteristics of the relationship between the resource distribution of U. chinensis and the marine environment in this area, and to reveal the main influencing factors. The results of model evaluation indexes show that the minimum Akaike information criterion (AIC) and adjusted R-Square ($R_{\rm{adj}}^2 $ ) for GWR model were 224.81 and 0.46, respectively, both of which were better than those of the traditional global linear regression model. Thus, the GWR model can more truly reflect the spatial heterogeneity on resource-environment relationship for U. chinensis. The impact of chlorophyll a on resources was a coexistence of positive and negative effects in the whole sea, but the other environment variables had consistent positive effects on resources. The stock distribution in the coastal waters of Guangdong was mainly affected by sea surface salinity, sea surface temperature and chlorophyll a, and the latter two were the primary influencing factors in western Guangdong and Pearl River Estuary-Eastern Guangdong, respectively, but the Beibu Gulf was only significantly affected by water depth. Under the impact of dominant environmental factors, U. chinensis stock denstiy showed obvious regional differentiation characteristics, especially those in the Pearl River Estuary-Eastern Guangdong significantly different from the other areas. In conclusion, GWR model provides an effective means to explore and understand the local characteristics of cephalopod resource-environment relationship.-
Key words:
- Uroteuthis chinensis /
- Heterogeneity /
- Geographically weighted regression
-
图 7 南海北部近海中国枪乌贼资源密度空间分布及其在3个区域的比较
注:A. 环北部湾;B. 粤西;C. 珠江口—粤东;*. P<0.05。
Figure 7. Spatial distribution of U. chinensis stock density and comparison among three regions in offshore waters of northern South China Sea
Note: A. Surrounding Beibu Gulf; B. Western Guangdong; C. Pearl River Estuary extending to eastern Guangdong; *. P<0.05.
表 1 全局回归模型OLR与地理权重回归模型GWR参数结果
Table 1. Results of parameters for ordinary linear regression (OLR) and geographical weighted regression (GWR) models
变量
Variable全局回归模型
OLR model地理权重回归模型 GWR model 最小值
Minimum下四分位值
Lower quartile中值
Median上四分位值
Upper quartile最大值
Maximum截距 Intercept 3.16 3.07 3.14 3.16 3.18 3.23 表温 tem_top −0.38 −0.46 −0.40 −0.28 −0.16 −0.06 表盐 sal_top 0.34 0.21 0.23 0.30 0.38 0.48 水深 Depth 0.33 0.07 0.21 0.59 0.85 1.04 叶绿素a Chl-a 0.41 −0.25 −0.09 0.02 0.39 0.52 -
[1] 张壮丽, 叶孙忠, 洪明进, 等. 闽南—台湾浅滩渔场中国枪乌贼生物学特性研究[J]. 福建水产, 2008(1): 1-5. [2] 郭金富, 陈丕茂. 南海头足类资源开发利用研究[J]. 热带海洋, 2000, 19(4): 51-58. [3] 黄梓荣. 南海北部陆架区头足类的种类组成和资源密度分布[J]. 南方水产, 2008, 4(5): 1-7. [4] SIN Y W, YAU C, CHU K H. Morphological and genetic differentiation of two loliginid squids, Uroteuthis (Photololigo) chinensis and Uroteuthis (Photololigo) edulis (Cephalopoda: Loliginidae), in Asia[J]. J Exp Mar Biol Ecol, 2009, 369(1): 22-30. doi: 10.1016/j.jembe.2008.10.029 [5] JIN Y, LIU B L, CHEN X J, et al. Morphological beak differences of loliginid squid, Uroteuthis chinensis and Uroteuthis edulis, in the northern South China Sea[J]. J Oceanol Limnol, 2018, 36(2): 559-571. doi: 10.1007/s00343-017-6285-0 [6] 韩青鹏, 陆化杰, 陈新军, 等. 南海北部海域中国枪乌贼角质额的形态学分析[J]. 南方水产科学, 2017, 13(4): 122-130. [7] 李建华, 张鑫浩, 金岳, 等. 基于耳石和角质颚微结构的中国枪乌贼年龄与生长比较[J]. 海洋渔业, 2018, 40(5): 513-521. [8] SUKRAMONGKOL N, TSUCHIYA K, SEGAWA S. Age and maturation of Loligo duvauceli and L. chinensis from Andaman Sea of Thailand[J]. Rev Fish Biol Fish, 2006, 17(2/3): 237-246. [9] JIN Y, LI N, CHEN X J, et al. Comparative age and growth of Uroteuthis chinensis and Uroteuthis edulis from China Seas based on statolith[J]. Aquac Fish, 2019, 4(4): 166-172. doi: 10.1016/j.aaf.2019.02.002 [10] ISLAM R, HAJISAMAE S, PRADIT S, et al. Feeding habits of two sympatric loliginid squids, Uroteuthis (Photololigo) chinensis (Gray, 1849) and Uroteuthis (Photololigo) duvaucelii (d'Orbigny, 1835), in the lower part of the South China Sea[J]. Molluscan Res, 2018, 38(3): 155-162. doi: 10.1080/13235818.2017.1409066 [11] 欧瑞木. 中国枪乌贼性腺成熟度分期的初步研究[J]. 海洋科学, 1983(1): 44-46. [12] JIANG L H, KANG L, WU C W, et al. Complete mitochondrial genome of the Loligo chinensis[J]. Mitochondrial DNA B, 2017, 2(2): 504-505. doi: 10.1080/23802359.2017.1361347 [13] JIANG L H, KANG L S, WU C W, et al. A comprehensive description and evolutionary analysis of 9 Loliginidae mitochondrial genomes[J]. Hydrobiologia, 2017, 808(1): 115-124. [14] 欧瑞木. 南海北部鱿鱼资源周期波动机制的初步探讨[J]. 水产科技情报, 1978(9): 1-4, 32. [15] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geogr Anal, 1996, 28(4): 281-298. [16] FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically weighted regression: the analysis of spatially varying relationships [M]. Chichester: Wiley, 2002: 1-102. [17] FOTHERINGHAM A S, CHARLTON M, BRUNSDON C. The geography of parameter space: an investigation of spatial non-stationarity[J]. Int J Geogr Inf Syst, 1996, 10(5): 605-627. doi: 10.1080/02693799608902100 [18] LIU C D, WAN R, JIAO Y, et al. Exploring non-stationary and scale-dependent relationships between walleye (Sander vitreus) distribution and habitat variables in Lake Erie[J]. Mar Freshw Res, 2017, 68(2): 270-281. doi: 10.1071/MF15374 [19] LIU C D, LIU J C, JIAO Y, et al. Exploring spatial nonstationary environmental effects on Yellow Perch distribution in Lake Erie[J]. PeerJ, 2019, 7: e7350. doi: 10.7717/peerj.7350 [20] LIKONGWE P, KIHORO J, NGIGI M, et al. Modeling spatial non-stationarity of Chambo in South-East Arm of Lake Malawi[J]. Asian J Appl Sci Eng, 2015, 4(2): 81-90. [21] WINDLE M J S, ROSE G A, DEVILLERS R, et al. Exploring spatial non-stationarity of fisheries survey data using geographically weighted regression (GWR): an example from the Northwest Atlantic[J]. ICES J Mar Sci, 2010, 67(1): 145-154. doi: 10.1093/icesjms/fsp224 [22] WINDLE M J S, ROSE G A, DEVILLERS R, et al. Spatio-temporal variations in invertebrate-cod-environment relationships on the Newfoundland-Labrador Shelf, 1995-2009[J]. Mar Ecol Prog Ser, 2012, 469: 263-278. doi: 10.3354/meps10026 [23] CULLEN D W, GUIDA V. Use of geographically weighted regression to investigate spatial non-stationary environmental effects on the distributions of black sea bass (Centropristis striata) and scup (Stenotomus chrysops) in the Mid-Atlantic Bight, USA[J]. Fish Res, 2021, 234: 105795. doi: 10.1016/j.fishres.2020.105795 [24] FENG Y J, LIU Y, CHEN X J. Modeling monthly spatial distribution of Ommastrephes bartramii CPUE in the Northwest Pacific and its spatially nonstationary relationships with the marine environment[J]. J Ocean Univ China, 2018, 17(3): 647-658. doi: 10.1007/s11802-018-3495-9 [25] 陈广威, 陈吕凤, 朱国平, 等. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子[J]. 生态学杂志, 2017, 36(10): 2803-2810. [26] 陈吕凤, 朱国平. 基于地理权重回归模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析[J]. 应用生态学报, 2018, 29(3): 938-944. [27] 贾明秀, 黄六一, 褚建伟, 等. 基于GAM和GWR模型分析环境因子对南极磷虾资源分布的非线性和非静态性影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(8): 19-26. [28] 赵杨, 张学庆, 卞晓东. 基于地理加权回归的渤海沙氏下鱵鱼仔稚鱼栖息地指数[J]. 应用生态学报, 2018, 29(1): 293-299. [29] 白思琦, 邹晓荣, 张鹏, 等. 环境因子对东南太平洋智利竹䇲鱼渔场时空分布异质性影响[J]. 南方水产科学, 2021, 17(1): 17-24. [30] WANG D, WAN R, LI Z, et al. The non-stationary environmental effects on spawning habitat of fish in estuaries: a case study of Coilia mystus in the Yangtze Estuary[J]. Front Mar Sci, 2021, 8: 766616. doi: 10.3389/fmars.2021.766616 [31] 蔡研聪, 徐姗楠, 陈作志, 等. 南海北部近海渔业资源群落结构及其多样性现状[J]. 南方水产科学, 2018, 14(2): 10-18. doi: 10.3969/j.issn.2095-0780.2018.02.002 [32] 曾雷, 陈国宝, 李纯厚, 等. 大亚湾湾口游泳生物群落季节异质特征与生态效应分析[J]. 南方水产科学, 2019, 15(3): 22-32. doi: 10.12131/20180246 [33] NAKAYA T, CHARLTON M, BRUNSDON C, et al. Gwr4.09 user manual: windows application for geographically weighted regression modelling [EB/OL]. (2016-03-24)[2023-01-11].https://gwrtools.github.io/author/taylor-oshan.html. [34] 陈强, 朱慧敏, 何溶, 等. 基于地理加权回归模型评估土地利用对地表水质的影响[J]. 环境科学学报, 2015, 35(5): 1571-1580. [35] YU H R, GONG H L, CHEN B B, et al. Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model[J]. Sci Total Environ, 2020, 738: 139405. doi: 10.1016/j.scitotenv.2020.139405 [36] 袁玉芸, 瓦哈甫·哈力克, 关靖云, 等. 基于GWR模型的于田绿洲土壤表层盐分空间分异及其影响因子[J]. 应用生态学报, 2016, 27(10): 3273-3282. doi: 10.13287/j.1001-9332.201610.022 [37] MELA C F, KOPALLE P K. The impact of collinearity on regression analysis: the asymmetric effect of negative and positive correlations[J]. Appl Econ, 2002, 34(6): 667-677. doi: 10.1080/00036840110058482 [38] KALA A K, TIWARI C, MIKLER A R, et al. A comparison of least squares regression and geographically weighted regression modeling of West Nile virus risk based on environmental parameters[J]. PeerJ, 2017, 5: e3070. doi: 10.7717/peerj.3070 [39] CIANNELLI L, FAUCHALD P, CHAN K S, et al. Spatial fisheries ecology: recent progress and future prospects[J]. J Mar Syst, 2008, 71(3/4): 223-236. [40] LI Y, JIAO Y, BROWDER J A. Modeling spatially-varying ecological relationships using geographically weighted generalized linear model: a simulation study based on longline seabird bycatch[J]. Fish Res, 2016, 181: 14-24. doi: 10.1016/j.fishres.2016.03.024 [41] BOOTH A J. Incorporating the spatial component of fisheries data into stock assessment models[J]. ICES J Mar Sci, 2000, 57(4): 858-865. doi: 10.1006/jmsc.2000.0816 [42] BABCOCK E A, PIKITCH E K, MCALLISTER M K, et al. A perspective on the use of spatialized indicators for ecosystem-based fishery management through spatial zoning[J]. ICES J Mar Sci, 2005, 62(3): 469-476. doi: 10.1016/j.icesjms.2005.01.010 [43] 马彩华. 南海地理学与鱼类生物多样性及渔业区划关系的研究 [D]. 青岛: 中国海洋大学, 2004: 9. -