Fish habitat suitability analysis of Dongta spawning ground of Pearl River based on fisheries acoustic survey
-
摘要: 东塔产卵场是珠江最大的鱼类产卵场,同时也是多种珍稀特有鱼类的重要栖息地,对维持珠江中下游鱼类早期资源的补充及其多样性至关重要。为评估东塔产卵场鱼类的栖息地适宜性,基于2016—2019年的声学数据,通过热点分析,筛选出鱼类适宜分布的区域。以地形因子水深、坡度、坡向为栖息地指示因子,建立各因子适宜度指数范围,进而采用几何平均值法建立栖息地适宜性指数 (Habitat suitability index, HSI) 模型,并计算研究江段的HSI值。结果显示,东塔产卵场鱼类密度分布介于0.009~0.057 尾·m−3;在时间上,鱼类密度呈逐年下降趋势,在空间上,鱼类分布整体自相关性不强,部分区域局部自相关性强,如产卵场沙洲邻近区域三年结果均为“热点区域”,大藤峡水利枢纽下游及石咀段出现“冷点区域”。该江段鱼类的适宜水深范围为5~8 m,适宜坡度范围为1.0°~1.5° (微斜坡),适宜坡向范围为90°~180° (东南方向)。通过HSI模型计算,得出研究江段HSI值介于0.02~0.95,平均值为0.31±0.22,高值区域集中出现在东塔产卵场的沙洲两侧,河流两侧也有零星分布,可能为鱼类潜在的适宜栖息区域;主航道基本为HSI低值区。利用2017年声学调查数据对HSI模型进行了验证,鱼类资源密度与HSI值呈线性正相关关系,表明该模型可较好地预测东塔产卵场的鱼类栖息情况,可用于江河鱼类栖息地适宜性分析与评价。Abstract: As the largest spawning ground, the Dongta spawning ground is an important habitat for many rare and unique fish in the Pearl River, playing an important role in maintaining the supplement and diversity of early fish resources in the middle and lower reaches of the Pearl River. In order to evaluate the fish habitat suitability, we selected the suitable habitat of fish by a hot spot analysis based on the acoustic data from 2016 to 2019. Taking the terrain factors (Water depth, slope and aspect) as habitat indicators to calculate the fitness index range of each factor, we established the habitat suitability index (HSI) model by using the geometric mean method and calculated the HSI value. It is showed that the fish density ranged from 0.009 to 0.057 ind·m−3 in Dongta spawning ground. In terms of time, the fish density had been decreasing year by year, but in terms of space, the overall autocorrelation of fish distribution was not strong, while the local autocorrelation was strong in some areas. For example, the area adjacent to the spawning ground sandbar had been a hot spot in three years, and the "cold spot area" appeared in the downstream of the Datengxia Water Project and Shizui Section. The most suitable water depth range was 5–8 m, the suitable slope range was 1.0°–1.5° (Micro-slope), and the suitable aspect range was 90°–180° (Southeast direction). The average HSI value was 0.31±0.22, ranging from 0.02 to 0.95, and the high value was obtained mainly on both sides of the sandbar of the Dongta spawning ground but scattered on both sides of the river, where might be potentially suitable habitat areas. The main channel was basically the area with low HSI values. The HSI model was verified based on the acoustic data in 2017, and the fish density and HSI showed a linear positive correlation, which indicates that the established model in this paper can be used to analyze and evaluate the habitat suitability of river fish.
-
表 1 东塔产卵场不同调查时间鱼类密度分布信息
Table 1. Fish density distribution in Dongta spawning ground in different periods
调查时间Survey year 鱼类密度Fish density/(尾·m−3) 范围Range 偏度Skewness 峰度Kurtosis 变异系数Coefficient of variance 2016年 0.057 4±0.128 7 (0.000 3, 1.018 4) 6.146 41.269 2.24 2017年 0.043 4±0.056 5 (0.007 2, 0.405 3) 3.744 17.185 1.30 2018年 0.031 6±0.037 7 (0.000 4, 0.196 7) 2.004 4.265 1.19 2019年 0.009 4±0.007 1 (0.000 4, 0.035 6) 1.492 2.536 0.75 -
[1] 郑丙辉, 张远, 李英博. 辽河流域河流栖息地评价指标与评价方法研究[J]. 环境科学学报, 2007(6): 928-936. [2] 赵进勇, 董哲仁, 孙东亚. 河流生物栖息地评估研究进展[J]. 科技导报, 2008, 26(17): 82-88. doi: 10.3321/j.issn:1000-7857.2008.17.014 [3] 易雨君, 侯传莹, 唐彩红, 等. 澜沧江中游河段中国结鱼栖息地模拟[J]. 水利水电技术, 2019, 50(5): 82-89. [4] YU L X, LIN J, CHEN D, et al. Ecological flow assessment to improve the spawning habitat for the four major species of carp of the Yangtze river: a study on habitat suitability based on ultrasonic telemetry[J]. Water, 2018, 10(5): 600. doi: 10.3390/w10050600 [5] 谢雨芳, 吴鹏, 刘永, 等. 珠江河口凤鲚的栖息地适宜性评价[J]. 南方水产科学, 2023, 19(1): 22-29. [6] WANG C Y, WEI Q W, KYNARD B, et al. Migrations and movements of adult Chinese sturgeon Acipenser sinensis in the Yangtze River, China[J]. J Fish Biol, 2012, 81(2): 696-713. doi: 10.1111/j.1095-8649.2012.03365.x [7] 张辉. 葛洲坝下游中华鲟(Acipenser sinensis)产卵场地形分析[J]. 生态学报, 2007, 27(10): 3945-3955. [8] 朱瑶. 大坝对鱼类栖息地的影响及评价方法述评[J]. 中国水利水电科学研究院学报, 2005, 3(2): 100-103. [9] 柏海霞, 彭期冬, 李翀, 等. 长江四大家鱼产卵场地形及其自然繁殖水动力条件研究综述[J]. 中国水利水电科学研究院学报, 2014, 12(3): 249-257. [10] YI Y J, ZHANG S, WANG Z Y. The bedform morphology of Chinese sturgeon spawning sites in the Yangtze River[J]. Int J Sediment Res, 2013, 28(3): 421-429. doi: 10.1016/S1001-6279(13)60052-9 [11] 俞立雄. 长江中游四大家鱼典型产卵场地形及水动力特征研究[D]. 成都: 西南大学, 2018: 51-64. [12] BORLAND H, GILBY B, HENDERSON C, et al. Dredging fundamentally reshapes the ecological significance of 3D terrain features for fish in estuarine seascapes[J]. Landscape Ecol, 2022, 37(5): 1-16. [13] 帅方敏, 李新辉, 李跃飞, 等. 珠江东塔产卵场鳙繁殖的生态水文需求[J]. 生态学报, 2016, 36(19): 1-8. [14] 黎小正. 模糊综合评价广西桂平东塔鱼类产卵场水质状况[J]. 广西科学院学报, 2010, 26(3): 363-366. [15] 帅方敏, 李新辉, 何安尤, 等. 珠江水系广西江段鱼类多样性空间分布特征[J]. 水生生物学报, 2020, 44(4): 819-828. doi: 10.7541/2020.098 [16] 张迎秋, 黄稻田, 李新辉, 等. 西江鱼类群落结构和环境影响分析[J]. 南方水产科学, 2020, 16(1): 42-52. doi: 10.12131/20190142 [17] TAN X C, LL X H, LEL S, et al. Annual dynamics of the abundance of fish larvae and its relationship with hydrological variation in the Pearl River[J]. Environ Biol Fish, 2010, 88(3): 217-225. doi: 10.1007/s10641-010-9632-y [18] SHUAI F M, LI X H, LI Y F, et al. Temporal patterns of larval fish occurrence in a large subtropical river[J]. PLoS One, 2016, 11(1): e0146441. doi: 10.1371/journal.pone.0146441 [19] 庞雪松, 杜敬民, 假冬冬, 等. 西江长洲枢纽下游近坝段水位下降特征及调控措施[J]. 水利水运工程学报, 2014(3): 42-48. doi: 10.3969/j.issn.1009-640X.2014.03.007 [20] 李建. 三峡初期蓄水对典型鱼类栖息地适宜性的影响[J]. 水利学报, 2013, 44(8): 892-900. [21] 谭细畅, 李新辉, 林建志, 等. 基于水声学探测的两个广东鲂产卵群体繁殖生态的差异性[J]. 生态学报, 2009, 29(4): 1756-1762. [22] FOOTE K, KNUDSEN H, VESTNES G, et al. Calibration of acoustic instruments for fish density estimation: a practical guide[J]. ICES Coop Res Rep, 1987, 144: 1-69. [23] 杨晓明, 戴小杰, 田思泉, 等. 中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性[J]. 生态学报, 2014, 34(13): 3771-3778. [24] BORLAND H P, GILBY B L, HENDERSON C J, et al. The influence of seafloor terrain on fish and fisheries: a global synthesis[J]. Fish Fish, 2021, 22(4): 707-734. doi: 10.1111/faf.12546 [25] 李翀. 长江上游保护区干流鱼类栖息地地貌及水文特征研究[D]. 北京: 中国水利水电科学研究院, 2013: 46-51. [26] MIRANDA L E, KILLGORE K J. Fish Depth distributions in the lower Mississippi River[J]. River Res Appl, 2014, 30(3): 347-359. doi: 10.1002/rra.2652 [27] SHELDON A L. Species diversity and longitudinal succession in stream fishes[J]. Ecology, 1968, 49(2): 193-198. doi: 10.2307/1934447 [28] ROBERTIS D A, HANDEGARD N O. Fish avoidance of research vessels and the efficacy of noise-reduced vessels: a review[J]. ICES J Mar Sci, 2013, 70(1): 34-45. doi: 10.1093/icesjms/fss155 [29] WHEELAND L J, ROSE G A. Quantifying fish avoidance of small acoustic survey vessels in boreal lakes and reservoirs[J]. Ecol Freshw Fish, 2014, 24(1): 67-76. [30] 童朝锋, 周云, 孟艳秋. 航道清礁对西江鱼类保护区紊流体的影响[J]. 水运工程, 2018(11): 138-144. [31] 李慧峰, 曹坤, 汪登强, 等. 鄱阳湖通江水道越冬时期鱼类群落的栖息地适宜性分析[J]. 中国水产科学, 2022, 29(3): 341-354. [32] PETITGAS P, WOILLED M, DORAY M, et al. A geostatistical definition of hotspots for fish spatial distributions[J]. Math Geosci, 2016, 48(1): 65-77. doi: 10.1007/s11004-015-9592-z [33] NELSON T A, BOOTS B. Detecting spatial hot spots in landscape ecology[J]. Ecography, 2008, 31(5): 556-566. doi: 10.1111/j.0906-7590.2008.05548.x [34] 李佳佳, 汪金涛, 陈新军, 等. 不同气候模态下西北太平洋柔鱼冬春生群资源时空分布变化研究[J]. 南方水产科学, 2020, 16(2): 62-69. doi: 10.12131/20190175 [35] 史慧敏, 樊伟, 张涵, 等. 基于渔船轨迹的阿根廷滑柔鱼捕捞强度空间分析[J]. 南方水产科学, 2021, 17(6): 1-11. [36] 李斌, 郑宇辰, 徐丹丹, 等. 长江上游弥陀漫滩水体鱼类食物网动态的季节性变化[J]. 生态学报, 2023, 43(4): 1664-1675. [37] AMOROS C, BORNETTE G. Connectivity and biocomplexity in waterbodies of riverine floodplains[J]. Freshw Biol, 2002, 47(4): 761-776. doi: 10.1046/j.1365-2427.2002.00905.x -