Analysis on differences of microbial community structure and main flavor substances of Cyprinus carpio var. Jinbei cultured in paddy fields and ponds
-
摘要: 探讨不同养殖模式下金背鲤 (Cyprinus carpio var. Jinbei) 肠道菌群和鱼肉风味品质差异,对金背鲤的繁殖优化具有重要意义。采用高通量测序技术对稻田放养和池塘养殖模式下金背鲤的肠道微生物进行测序,利用液相色谱和顶空固相微萃取-气相色谱-离子迁移谱联用 (HS-SPME-GC-IMS) 技术测定其滋味物质、挥发性风味化合物,结合感觉阈值计算滋味活性值和相对气味活度值。结果显示:两种养殖模式的金背鲤肠道细菌群落结构差异显著,稻田放养 (FGF) 组以弧菌 (Vibrio)、拟杆菌 (Bacteroides)、交替单胞菌 (Alteromonadales)、希瓦氏菌 (Shewanella)、嗜冷假单胞菌 (Pseudomonas psychrophile) 和Brevinema属为主,池塘养殖 (FGP) 组以莫拉克斯氏菌 (Moraxella) 和克雷伯菌属 (Klebsiella) 为主;FGF组中鲜味肌苷酸含量及其滋味活性值 (1.676 g·kg−1, 6.705) 远高于FGP组 (0.246 g·kg−1, 0.985),FGF组鲜味氨基酸和甜味氨基酸含量 (0.143和2.052 g·kg−1) 高于FGP组 (0.109和2.001 g·kg−1),而其苦味氨基酸 (3.193 g·kg−1) 却低于FGP组 (3.836 g·kg−1);金背鲤的挥发性化合物组分复杂,其关键气味化合物 (ROAV≥1) 和对整体风味有修饰作用的化合物 (0.1≤ROAV<1) 的种类存在差异。菌属与风味物质的相关性分析显示弧菌属、拟杆菌属、克雷伯菌属和摩根菌属 (Morganella) 与风味物质呈显著相关 (0.01≤P<0.05 & 0.001≤P<0.01 & P<0.001)。研究表明,养殖模式影响了金背鲤的肠道微生物,并间接影响了其风味品质。Abstract: It is important to study the differences of intestinal flora and fish flavor quality of Cyprinus carpio var. Jinbei under different culture modes for its breeding optimization. We applied illumina high-throughput sequencing technology to analyze intestinal microflora of C. carpio var. Jinbei cultured in paddy fields (FGF) and ponds (FGP), respectively. Besides, we used liquid chromatography (LC) to determine the flavor substances, and used headspace solid phase microextraction combining with gas chromatography-ion mobility spectrometry (HS-SPME-GC-IMS) to determine the volatile flavor substances. Then we calculated the taste activity value and relative odor activity by combining the sensory threshold. Significant difference analysis shows that Vibrio, Bacteroides, Alteromonadales, Shewanella, Pseudomonas psychrophila and Brevinema were the main bacteria in FGF group, while Moraxella and Klebsiella were the main bacteria in FGP group. The contents of IMP and flavor activity in FGF group (1.676 g·kg−1 and 6.705) were significantly higher than those in FGP group (0.246 g·kg−1 and 0.985). The contents of umami amino acids and sweet amino acids in FGF group (0.143 and 2.052 g·kg−1) were higher than those in FGP group (0.109 and 2.001 g·kg−1). However, the contents of bitter amino acids in FGF group (3.193 g·kg−1) were lower than those in FGP group (3.836 g·kg−1). Moreover, the components of volatile compounds were complex, and the types of key odor compounds (ROAV≥1) and compounds that could modify the overall flavor (0.1≤ROAV<1) were different. The correlation analysis between bacteria genera and flavor substances shows that Vibrio, Bacteroides, Klebsiella and Morganella were significantly correlated with flavor substances (0.01≤P<0.05 & 0.001≤P<0.01 & P<0.001). The results indicate that cultivation mode affects the intestinal microbes of fish, and affects the flavor quality of fish indirectly.
-
表 1 两种养殖模式的金背鲤肌肉中核苷酸及其关联产物含量及K值 (N=3)
Table 1. Nucleotides contents, their related products and K value in muscle of C. carpio var. Jinbei of FGF and FGP groups (N=3)
核苷酸种类
Nucleotide阈值[17]
Threshold/(g·kg−1)呈味特征
Taste characteristics核苷酸含量
Nucleotide content/(g·kg−1)滋味活性值
TAV稻田放养
FGF池塘养殖
FGP稻田放养
FGF池塘养殖
FGP腺苷三磷酸 ATP — — 0.051±0.0066a 0.07686±0.0012b 腺苷二磷酸 ADP — — 0.885±0.0271b 1.935±0.0163a 腺苷酸 AMP 0.50 鲜甜味 0.1747±0.0173a 0.146±0.00026b 0.349 0.291 肌苷酸 IMP 0.25 鲜味 1.676±0.1109a 0.246±0.0055b 6.705 0.985 次黄嘌呤核苷 HXR — 苦味 0.0162±0.0021b 0.0342±0.0017a 次黄嘌呤 HX — 苦味 0.0826±0.0062b 0.193±0.0035a Σ呈味核苷酸 ΣFlavoring nucleotide 2.885±0.17a 2.63±0.028b K值 K value/% 8.805 21.305 注:“—”表示未查到相关阈值和呈味特征;同行中不同字母间存在显著性差异 (P<0.05);下同。 Note: "—" indicates that the relevant threshold and flavor characteristics are not found; values with different letters within the same line are signifi-cantly different (P<0.05). The same case in the following tables. 表 2 两种养殖模式下金背鲤肌肉中游离氨基酸与滋味活性值
Table 2. Amino acid and taste activity value in muscle of C. carpio var. Jinbei of FGF and FGP groups
氨基酸Amino acid 阈值[18-19]Threshold/(g·kg−1) 呈味特征[20-22]Taste characteristics 游离氨基酸含量 Free amino acid content/(g·kg−1) 滋味活性值TAV 稻田放养 FGF 池塘养殖FGP 稻田放养FGF 池塘养殖FGP 苏氨酸 Thr★ 2.60 甜 (+) 0.312±0.0042b 0.362±0.0041a 0.119 0.138 赖氨酸 Lys★ 0.50 甜/苦 (−) 0.254±0.0081b 0.495±0.011a 0.495 0.991 缬氨酸 Val▲ 0.40 甜/苦 (−) 0.297±0.0031b 0.357±0.0023a 0.737 0.888 蛋氨酸 Met▲ 0.30 苦/甜/硫 (−) 0.031±0.00002b 0.0459±0.0002a 0.103 0.153 色氨酸 Trp◆ 0.90 苦/芳香 (−) 0.0284±0.0004a 0.0256±0.0002b 0.035 0.031 苯丙氨酸 Phe◆ 0.90 苦/芳香 (−) 0.091±0.0004b 0.119±0.0027a 0.101 0.13 异亮氨酸 Ile▲ 0.90 苦 (−) 0.0501±0.0006b 0.819±0.0003a 0.055 0.091 亮氨酸 Leu▲ 1.90 苦 (−) 0.0982±0.0026b 0.137±0.00007a 0.051 0.072 Σ必需氨基酸 ΣEAA 1.162±0.019b 1.623±0.021a 1.69 2.49 组氨酸 His▲ 0.20 酸/苦 (−) 1.825±0.002b 2.139±0.016a 9.117 10.64 精氨酸 Arg▲ 0.50 甜/苦 (−) 0.0816±0.0018b 0.181±0.001a 0.161 0.36 Σ半必需氨基酸 ΣSEAA 1.907±0.0038b 2.32±0.017a 9.28 11.00 天冬氨酸 Asp● 0.03 鲜/酸 (+) 0.0281±0.0005a 0.0143±0.0003b 0.923 0.483 谷氨酸 Glu● 0.05 鲜/酸 (+) 0.114±0.0014a 0.0949±0.004b 2.268 1.954 丙氨酸 Ala★ 0.60 鲜/甜 (+) 0.315±0.015a 0.251±0.014b 0.542 0.401 丝氨酸 Ser★ 1.50 甜 (+) 0.131±0.0027b 0.159±0.0001a 0.086 0.106 甘氨酸 Gly★ 1.30 甜 (+) 1.088±0.017a 0.905±0.0018b 0.827 0.697 脯氨酸 Pro★ 3.00 甜/苦 (+) 0.124±0.0016b 0.174±0.012a 0.041 0.055 肌氨酸 Sar — — 0.125±0.012a 0.122±0.001a 酪氨酸 Tyr◆ 0.91 苦/芳香 (−) 0.0693±0.0015b 0.0869±0.001a 0.075 0.095 半胱氨酸 Cys▲ — 苦/甜/硫 (−) 0.639±0.027a 0.550±0.007b Σ非必需氨基酸 ΣNEAA 2.689±0.083a 2.357±0.041b 4.279 2.868 羟脯氨酸 Hyp — — 0.575±0.01a 0.604±0.02a 谷氨酰胺 Gln — — 0.08±0.0019b 0.102±0.0009a 天冬酰胺 Asn — — 0.0031±0.0001a 0.0034±0.0004a 瓜氨酸 Cit — — 0.0357±0.0006b 0.0654±0.0001a 游离氨基酸总量 Total free amino acid 6.361±0.12b 7.137±0.098a ● 鲜味氨基酸总量/占比 Total delicious amino acid/Proportion 0.1425±0.0019a/2.24% 0.109±0.0042b/1.53% ★ 甜味氨基酸总量/占比 Total Sweet amino acid/Proportion 2.052±0.013a/32.26% 2.031±0.033a/28.46% ▲ 苦味氨基酸总量/占比 Total bitter amino acid/Proportion 3.193±0.01b/50.19% 3.836±0.0071a/53.74% ◆ 芳香氨基酸总量/占比 Total aromatic amino acids/Proportion 0.189±0.0021b/2.96% 0.232±0.0039a/3.25% 表 3 两组养殖模式的金背鲤肌肉中挥发性化合物相对含量及其ROVA值
Table 3. Volatile compounds and relative odor activity value in muscle of C. carpio var. Jinbei of FGF and FGP groups μg·kg−1
化合物Compound 阈值[28-29]Threshold/(μg·kg−1) 气味特征[28]Odour characteristics 稻田放养 FGF 池塘养殖 FGP 相对含量 Relative content 相对气味活度值ROAV 相对含量 Relative content 相对气味活度值ROAV 醛类 Aldehydes 21.42% 9.54% 壬醛 Nonanal 1 脂香、青草味 12.07±2.45a 100 4.384±0.63b 100 辛醛 Octanal 0.7 果香叶 6.32±1.1a 74.80 3.633±0.49b 43.01 庚醛 Heptanal 3 鱼腥、烤鱼、哈喇味 9.67±1.43a 26.71 5.641±1.34b 15.58 E-2-己烯醛 (E)-2-Hexenal 17 青香、脂香、果香味 3.42±1.48a 1.67 2.54±0.26b 1.24 己醛-M Hexanal-M 4.5 鱼腥、青草味 44.35±3.09a 81.56 30.11±4.64b 55.44 己醛-D Hexanal-D 4.5 鱼腥、青草味 31.66±3.85a 58.29 11.60±4.72b 21.36 戊醛 Pentanal 20 果香味 13.1±0.77a 5.43 6.623±0.85b 2.74 2-甲基丁醛2-Methylbutanal 1 果香味 4.08±0.29b 33.8 6.80±1.2a 56.34 3-甲基丁醛 3-Methylbutanal 1.1 巧克力味、腐臭味 2.71±0.14b 20.41 4.84±1.11a 36.45 丁醛 Butanal 1.3 花香、水果香味 5.07±0.72a 32.31 5.66±0.53a 36.07 苯甲醛 Benzaldehyde 350 苦杏仁味 2.6±0.44a 0.062 1.63±0.42b 0.038 醇类 Alcohols 12.79% 19.19% 1-庚醇 1-Heptanol 330 脂味、酒香 2.07±0.33a 0.052 1.35±0.31b 0.034 1-辛烯-3-醇 1-Octen-3-ol 10 蘑菇味、泥土味 3.64±0.54b 3.16 5.80±2.38a 4.81 1-己醇 1-Hexanol 5.6 青草味 3.38±0.54b 5.00 6.22±2.01a 9.20 正戊醇 1-Pentanol 150.2 面包酒香、果香 3.29±0.19b 0.18 5.33±0.3a 0.29 1-戊烯-3-醇 1-Penten-3-ol 358.1 肉香味、鱼腥味 10.68±1.09a 0.25 9.03±2.05b 0.021 1-丁醇 1-Butanol 5 000 温和的杂醇油气息 1.21±0.08a <0.01 1.04±0.07a <0.01 乙醇 Ethanol 100 000 酒味 29.21±6.39a <0.01 26.75±2.58a <0.01 异丙醇 2-Propanol — — 2.85±0.09b 21.92±3.37a 3-甲基-1-丁醇 3-Methyl-1-butanol 250 发酵味、油脂味、 1.26±0.12b 0.04 3.34±0.69a 0.11 正丙醇 1-Propanol 8 505 — 18.04±1.36b 0.018 80.69±4.78a 0.079 异丁醇 Isobutanol 7 000 — 1.26±0.09b <0.01 2.16±0.27a <0.01 Z-3-己烯-1-醇 (Z)-3-Hexen-1-ol 250 — 0.39±0.06b 0.013 1.15±0.04a 0.038 芳樟醇 Linalool 30 000 热带香辛料味 1.96±0.14a <0.01 1.46±0.36a <0.01 2-甲基-1-丁醇 2-Methyl-1-butanol 1 200 — 1.4±0.04a <0.01 1.65±0.25a 0.01 酮类 Ketones 55.46% 58.01% 3-辛酮 3-Octanone 28 酮香、青香 2.35±0.15a 0.70 1.76±0.31b 0.52 3-羟基-2-丁酮 3-Hydroxy-2-butanone 800 脂香味 24.67±1.85a 0.26 16.73±0.34b 0.17 1-戊烯-3-酮 1-Penten-3-one 1 蘑菇味、烤焦味 4.54±1.32a 37.61 1.72±0.16b 14.25 2-戊酮 2-Pentanone 13 800 果味 4.7±0.2a <0.01 4.27±0.42b <0.01 2-丁酮-D 2-Butanone-D 50 000 醚香、果香、樟脑香 18.42±1.83b <0.01 72.65±3.42a 0.012 2-丁酮-M 2-Butanone-M 50 000 醚香、果香、樟脑香 35.87±0.82b <0.01 40.29±1.69a <0.01 2-丙酮 2-Propanone — 青草味 259.14±7.81b 370.14±8.67a 酯类 Esters 2.06% 0.94% 甲酸丁酯 Butyl formate — 2.95±0.45a 1.841±0.11b 乙酸乙酯-M Ethyl Acetate-M 5 醚香、果香 7.65±0.9a 12.68 4.70±0.37b 7.79 乙酸乙酯-D Ethyl Acetate-D 5 醚香、果香 2.36±0.5a 3.91 1.72±0.29a 2.85 酸类 Acids 1.25% 3.36% 2-甲基丙酸 2-Methylpropanoic acid — — 2±0.12a 2.14±0.15a 3-甲基丁酸 3-Methylbutanoic acid — — 0.57±0.07b 1.44±0.12a 丙酸 Propanoic acid — — 5.29±0.75b 25.86±0.47a 烃类 Hydrocarbon 0.77% 0.19% β-罗勒烯 beta-Ocimene 34 脂香、甜味 4.85±0.69a 1.18 1.65±0.77b 0.40 醚类 Ethers 5.47% 1.86% 二甲基硫醚 Dimethyl sulfide 300 果香、青香味 34.46±2.78a 0.95 16.28±0.45b 0.045 其他类 Others 0.78% 6.89% 未鉴定物质1 Unidentified substance 1 — — 2.49±0.34b 7.76±0.33a 未鉴定物质2 Unidentified substance 2 — — 2.04±0.04b 50.80±4.06a 未鉴定物质3 Unidentified substance 3 — — 0.41±0.03b 1.71±0.06a -
[1] 管卫兵, 刘凯, 石伟, 等. 稻渔综合种养的科学范式[J]. 生态学报, 2020, 40(16): 5451-5464. [2] 王强盛, 余坤龙, 倪雪颖, 等. 我国稻渔综合种养的发展过程及技术趋势[J]. 中国稻米, 2021, 27(4): 88-91. [3] 张学军. 稻田养鱼前景浅析[J]. 南方农业, 2018, 12(2): 96-99. [4] CHOWDHURY M T H, DEWAN S, WAHAB M A, et al. Water quality parameters of the rice fields used for rice cum fish culture[J]. Bangladesh J Fish, 2000, 23(1): 25-29. [5] 翟万营, 郭安宁. 鱼类肠道微生物研究进展[J]. 河南水产, 2016(4): 18-21, 40. [6] 邹礼根, 郭水荣, 翁丽萍, 等. 两种不同养殖模式对青鱼肌肉营养品质的影响[J]. 宁波大学学报 (理工版), 2018, 31(4): 25-30. [7] 张艳霞, 谢成民, 周纷. 两种养殖模式大黄鱼肌肉营养价值评价及主体风味物质差异性分析[J]. 食品科学, 2020, 41(8): 220-227. [8] 秦晓. 养殖暗纹东方鲀风味物质鉴定分析[D]. 上海: 上海海洋大学, 2015: 3-13. [9] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604 [10] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microb, 2009, 75(23): 7537-7541. doi: 10.1128/AEM.01541-09 [11] WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007, 73(16): 5261-5267. doi: 10.1128/AEM.00062-07 [12] 徐永霞, 李鑫晰, 赵洪雷, 等. 六种海水鱼类鱼汤的呈味物质比较分析[J]. 食品与发酵工业, 2021, 47(21): 240-245. [13] 刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法: “ROAV”法[J]. 食品科学, 2008, 29(7): 370-374. [14] 朱昊俊, 强 俊, 徐钢春, 等. 哈尼梯田稻-渔共作模式下杂交黄颡鱼肠道微生物研究[J]. 水生生物学报, 2021, 45(6): 1232-1242. [15] WU S G, WANG G T, ANGERT E R, et al. Composition, diversity and origin of the bacterial community in grass carp intestine[J]. PLoS One, 2012, 7(2): e30440. doi: 10.1371/journal.pone.0030440 [16] ZHU H J, QIANG J ,TAO Y F, et al. Physiological and gut microbiome changes associated with low dietary protein level in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) deter-mined by 16S RNA sequence analysis[J]. Microbiologyopen, 2020, 9(5): e1000. [17] 陈剑岚, 陈舜胜, 施文正, 等. 大小草鱼肉呈味水溶性成分的比较[J]. 食品与发酵工业, 2017, 43(1): 213-217. [18] 王雪锋, 李春萍, 吴佳佳, 等. 臭鳜鱼发酵中滋味成分的鉴定与分析[J]. 中国食品学报, 2015, 15(1): 222-229. [19] 蒋滢, 徐颖, 朱庚伯. 人类味觉与氨基酸味道[J]. 氨基酸和生物资源, 2002, 24(4): 1-3. [20] 邱伟强, 刘冰宣, 陈舜胜, 等. 法快速测水产 品中游离芳香族氨基酸含量的研究[J]. 上 海海洋大学学报, 2013, 22(4): 629-633. [21] 陈剑岚, 邵琳雅, 施文正, 等. 不同宰杀方式对草鱼肉呈味水溶性成分的影响[J]. 食品科学, 2016, 37(17): 27-31. [22] 高琴, 安碉琦, 陈周, 等. 短时微流水处理对池塘养殖鳙鱼肌肉滋味品质的影响[J]. 水生生物学报, 2021, 45(5): 1057-1066. [23] LIOE H N, APRIYANTONO A, TAKARA K, et al. Umami taste enhancement of MSG/NaCl mixtures by subthreshold L-α-aroma-tic amino acids [ J]. J Food Sci, 2006, 70(7): 401-405. [24] 张秀洁, 郭全友, 王鲁民, 等. 养殖大黄鱼滋味和气味物质组成及评价[J]. 食品与发酵工业, 2019, 45(20): 242-249. [25] 陈德慰, 苏键, 刘小玲, 等. 广西北部湾3种贝类中主要呈味物质的测定及呈味作用评价[J]. 食品科学, 2012, 33(10): 165-168. [26] 姜万舟, 汪倩, 王瑞花, 等. 挂糊鳙鱼块油炸工艺优化及不同工艺对非挥发性呈味物质的影响[J]. 食品工业科技, 2016, 37(7): 182-187, 192. [27] LU Q, LIU F F, BAO J Q. Volatile components of American silver carp analyzed by electronic nose and MMSE-GC-MS-O[J]. J Food Biochem, 2019, 43(11): 13006. [28] 陈实, 施文正, 汪之和. 青鱼背肉、腹肉和尾肉不同风味成分的比较[J]. 渔业现代化, 2021, 48(1): 58-66. [29] 余远江, 庞一扬, 袁桃静, 等. 基于电子鼻、HS-GC-IMS 和 HS-SPME-GC-MS 分析五种水产原料的风味特征[J]. 食品工业科技, 2021, 42(19): 106-117. [30] HANSEN G H, OLAFSEN J A. Bacterial colonization of cod (Gadus morhua L.) and halibut (Hippoglossus hippoglossus) eggs in marine aquaculture[J]. Appl Environ Microbiol, 1989, 55(6): 1435-1446. doi: 10.1128/aem.55.6.1435-1446.1989 [31] 赵月季, 郭海朋, 张德民. 不同养殖模式对凡纳滨对虾肠道微生物群 落的影响[J]. 水产学报, 2021, 45(2): 221-234. [32] NI J J, YAN Q Y, YU Y H, et al. Factors influencing the grass carp gut microbiome and its effect on metabolism[J]. Fems Microbiol Ecol, 2014, 87(3): 704-714. doi: 10.1111/1574-6941.12256 [33] FJELLHEIM A J, KLINKENBERG G, SKJERMO J, et al. Selection of candidate probionts by two different screening strategies from Atlantic cod (Gadus morhua L.) larvae[J]. Vet microbiol, 2020, 144(1): 153-159. [34] KLEWICKI R, KLEWICKA E. Antagonistic activity of lactic acid bacteria as probiotics against selected bacteria of the Enterobaceria-cae family in the presence of polyols and their galactosyl deriva-tives[J]. Biotechnol Lett, 2004, 26(4): 317-320. doi: 10.1023/B:BILE.0000015450.59100.60 [35] SAHU M K, SWARNAKUMAR N S, SIVAKUMAR K, et al. Probio-tics in aquaculture: importance and future perspectives[J]. Ind J Microbiol, 2008, 48(3): 299-308. doi: 10.1007/s12088-008-0024-3 [36] 刘源, 崔智勇, 周雪珂, 等. 水产品滋味研究进展[J]. 食品科学技术学报, 2022, 40(1): 22-29. [37] 刘亚, 章超桦, 陆子锋. 高效液相色谱法检测水产品中的 ATP 关联化合物[J]. 食品与发酵工业, 2010, 36(6): 137-141. [38] ZHANG J H, XU Y S, XIA W S, et al. Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing[J]. Food Res, 2018, 111: 565-573. doi: 10.1016/j.foodres.2018.05.076 [39] ZHANG N L, AYED C, WANG W L, et al. Sensoryguided analysis of key taste-active compounds in pufferfish (Takifugu obscu-rus)[J]. J Agric Food Chem, 2019, 67(50): 13809-13816. doi: 10.1021/acs.jafc.8b06047 [40] 吕敏, 甘晖, 陈田聪, 等. 瓦氏黄颡鱼在稻田和池塘养殖中的生长性能和肌肉品质比较[J]. 水产学杂志, 2022, 35(1): 75-81. [41] 段青源, 钟惠英, 斯列钢, 等. 网箱养殖大黄鱼与天然大黄鱼营养成分的比较分析[J]. 浙江海洋学院学报 (自然科学版), 2000, 19(2): 125-128. [42] 陆大鹏. 水产品挥发性成分的研究进展[J]. 食品安全导刊, 2022(3): 142-145. [43] 吴永俊, 王玉涛, 施文正, 等. 不同产地虹鳟鱼肉风味物质的比较[J]. 上海海洋大学学报, 2017, 26(6): 888-899. [44] 张青, 王锡昌, 刘源. SDE-GC-Olfactometry联用研究鲢鱼肉的挥发性气味活性物质[J]. 安徽农业大学学报, 2009, 37(4): 1407-1409, 1425. [45] 赵庆喜, 薛长湖, 徐杰, 等. 微波蒸馏-固相微萃取-气相色谱-质谱-嗅觉检测器联用分析鳙鱼鱼肉中的挥发性成分[J]. 色谱, 2007, 25(2): 267-271. [46] MILO C, GROSCH W. Changes in the odorants of boiled salmon and cod as affected by the storage of the raw material[J]. J Agric Food Chem, 1996, 44(8): 2366-2371. doi: 10.1021/jf9507203 [47] 郝淑贤, 叶鸽, 李来好, 等. 不同养殖模式罗非鱼的挥发性成分分析[J]. 食品与发酵工业, 2016, 42(6): 147-152. [48] 解万翠, 卢宽, 于靖, 等. 水产品香气研究进展[J]. 食品科学技术学报, 2022, 40(1): 11-21. [49] 曹静, 张凤枰, 龙斌, 等. 野生和养殖长吻鮠肌肉挥发性风味成分分析[J]. 食品科学, 2015, 36(16): 170-174. [50] 顾赛麒, 唐锦晶, 周绪霞, 等. 腌腊鱼传统日晒干制过程中品质变化与香气形成[J]. 食品科学, 2019, 40(17): 36-44. [51] MIYASAKI T, HAMAGUCHI M, YOKOYAMA S. Change of volatile compounds in fresh fish meat during ice storage[J]. J Food Sci, 2011, 76(9): 1319-1325. doi: 10.1111/j.1750-3841.2011.02388.x [52] SUGITA H, MIYAJIMA C, DEGUCHI Y. The Vitamin B12-producing ability of intestinal microflora isolated from tilapia and channel catfish[J]. Bull Jpn Soc Sci Fish, 1990, 56(4): 701-704. doi: 10.2331/suisan.56.701 [53] 李学梅. 鲤科鱼类肠道微生物与宿主关系研究[D]. 北京: 中国科学院大学, 2012: 89. [54] YANG G, JIAN S Q, CAO H Z, et al. Changes in microbiota along the intestine of grass carp (Ctenopharyngodon idella): community, interspecific interactions, and functions[J]. Aquaculture, 2019, 498: 151-161. doi: 10.1016/j.aquaculture.2018.08.062 [55] ASFIE M, YANAGI H, OKANO R, et al. The protease-producing ability of Vibrios isolated from larvae and juveniles of Japanese flounder[J]. Aquac Sci, 2000, 48(1): 139-140. -