留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鮸鱼α-葡萄糖苷酶抑制活性肽的制备、分离及理化特性研究

霍玉梅 胡晓 吴燕燕 江津津

霍玉梅, 胡晓, 吴燕燕, 江津津. 鮸鱼α-葡萄糖苷酶抑制活性肽的制备、分离及理化特性研究[J]. 南方水产科学. doi: 10.12131/20220269
引用本文: 霍玉梅, 胡晓, 吴燕燕, 江津津. 鮸鱼α-葡萄糖苷酶抑制活性肽的制备、分离及理化特性研究[J]. 南方水产科学. doi: 10.12131/20220269
HUO Yumei, HU Xiao, WU Yanyan, JIANG Jinjin. Preparation, separation and physicochemical properties of α-glucosidase inhibitory peptides from Miichthys miiuy[J]. South China Fisheries Science. doi: 10.12131/20220269
Citation: HUO Yumei, HU Xiao, WU Yanyan, JIANG Jinjin. Preparation, separation and physicochemical properties of α-glucosidase inhibitory peptides from Miichthys miiuy[J]. South China Fisheries Science. doi: 10.12131/20220269

鮸鱼α-葡萄糖苷酶抑制活性肽的制备、分离及理化特性研究

doi: 10.12131/20220269
基金项目: 国家海水鱼产业技术体系(CARS-47);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费(2021SD06);广州市高等教育教学质量与教学改革工程名师工作室项目食品科技应用工作室(2022MSGZS015)
详细信息
    作者简介:

    霍玉梅(1995—),女,硕士研究生,研究方向为水产品加工与质量安全控制。E-mail: 1525653869@qq.com

    通讯作者:

    胡 晓(1981—),男,研究员,博士,研究方向为水产品加工与质量安全控制。E-mail: hnhuxiao@163.com

    吴燕燕(1969—),女,研究员,博士,研究方向为水产品加工与质量安全控制。E-mail: wuyygd@163.com

  • 中图分类号: S 985.1+3

Preparation, separation and physicochemical properties of α-glucosidase inhibitory peptides from Miichthys miiuy

  • 摘要: 为实现鮸鱼 (Miichthys miiuy) 加工副产物的高值化利用,选用鮸鱼加工副产物鱼碎肉作为原料,以α-葡萄糖苷酶 (α-glucosidase) 抑制率为评价指标,通过单因素实验和响应面法优化α-葡萄糖苷酶抑制肽的制备工艺条件,确定胰酶的最佳酶解条件为:时间4.8 h,加酶量0.21%,pH 8.5,料液比1∶2 (m/V),温度46 ℃。在此基础上,分析了酶解产物体外模拟胃肠液消化前后其抑制活性的变化,绘制酶抑制动力学曲线,并采用SephadexG-25对酶解物进行分离,测定酶解物的相对分子质量分布及氨基酸组成。结果表明:活性肽经体外模拟胃肠液消化后α-葡萄糖苷酶抑制率提高至61.97%;其对α-葡萄糖苷酶抑制作用为混合型抑制;酶解物的相对分子质量集中分布在3 kD以下 (占91.85%) ;经G-25分离F4组分对α-葡萄糖苷酶抑制率为58.05%,其<1 kD的肽组分占78.28%;酶解物中天冬氨酸、谷氨酸、精氨酸、酪氨酸、缬氨酸、丙氨酸、亮氨酸和赖氨酸等相对含量较高。
  • 图  1  最佳蛋白酶的选择

    注:字母不同表示差异显著 (P<0.05),下同。

    Figure  1.  Selection of best protease

    Note: Different letters indicate significant difference (P<0.05). The same case in the following figures.

    图  2  时间、加酶量、pH、料液比和温度对α-葡萄糖苷酶抑制活性的影响

    Figure  2.  Effects of time, enzyme dosage, pH, liquid -material ratio and temperature on α-glucosidase inhibition activity

    图  3  两因素交互作用的响应面图

    Figure  3.  Response surfaces of two factors

    图  4  鮸鱼酶解物消化后的α-葡萄糖苷酶抑制活性

    Figure  4.  α-glucosidase inhibitory activity of M. miiuy enzymatic hydrolysates after digestion

    图  5  鮸鱼酶解物抑制α-葡萄糖苷酶的Lineweaver-Burk曲线

    Figure  5.  Lineweaver -Burk plots for inhibition of M. miiuy enzymatic hydrolysates on α-glucosidase

    图  6  鮸鱼酶解物HPLC色谱图及分子质量分布图

    Figure  6.  HPLC chromatogram of M. miiuy enzymatic hydrolysates and its molecular weight distribution

    图  7  Sephadex G-25洗脱组分和α-葡萄糖苷酶活性

    Figure  7.  α-glucosidase activity of Sephadex G-25 eluents

    图  8  Sephadex G-25 洗脱各组分的HPLC色谱图及相对分子质量分布图

    Figure  8.  HPLC chromatogram and molecular weight distribution of Sephadex G-25 eluents

    表  1  蛋白酶的酶解条件

    Table  1.   Enzymolysis conditions of protease

    酶种类
    Enzyme type
    最适温度
    Optimal
    temperature/℃
    最适pH
    Optimal
    pH
    木瓜蛋白酶 Papain506.5
    中性蛋白酶 Neutral protease507.0
    碱性蛋白酶 Alkaline protease508.0
    复合蛋白酶 Compound protease507.5
    胰酶 Trypsin378.0
    下载: 导出CSV

    表  2  响应面实验因素和水平

    Table  2.   Factors and levels in response surface design

    水平
    Level
    因素 Factor
    酶解时间 (A)
    Enzymolysis
    time/h
    加酶量 (B)
    Enzyme
    dosage/%
    酶解温度 (C)
    Enzymolysis
    temperature/℃
    −120.142
    040.247
    160.352
    下载: 导出CSV

    表  3  Box-Behnken 实验设计及结果

    Table  3.   Design and results of Box-Behnken experiment

    序号
    Group
    No.
    A:酶解时间
    Enzymolysis
    time/h
    B:加酶量
    Enzyme
    dosage/%
    C:酶解温度
    Enzymolysis
    temperature/℃
    Y:α-葡萄糖苷酶
    抑制率
    α-inhibition
    rate of
    glucosidase/%
    140.15251.87
    260.24252.37
    320.14750.39
    420.25253.66
    540.24755.44
    620.24242.33
    740.24754.41
    840.35249.56
    940.34248.45
    1020.34746.00
    1160.25247.40
    1260.14749.04
    1340.24753.91
    1460.34750.79
    1540.24753.08
    1640.24753.29
    1740.14246.63
    下载: 导出CSV

    表  4  Box-Behnken实验回归模型方差分析

    Table  4.   AVOVA of Box-Behnken experiment

    来源  
    Source  
    平方和
    Sum of squares
    自由度
    df
    均方
    Mean square
    FPProb>F
    模型 Model 195.83 9 21.76 36.36 < 0.0001 **
    A 6.52 1 6.52 10.89 0.0131 *
    B 1.22 1 1.22 2.05 0.1957
    C 20.19 1 20.19 33.74 0.0007 **
    AB 9.42 1 9.42 15.75 0.0054 **
    AC 66.42 1 66.42 110.99 < 0.0001 **
    BC 4.26 1 4.26 7.13 0.0320 *
    A2 28.01 1 28.01 46.80 0.0002 **
    B2 24.09 1 24.09 40.25 0.0004 **
    C2 26.46 1 26.46 44.21 0.0003 **
    残差 Residual 4.19 7 0.60
    失拟项 Lack of fit 0.59 3 0.20 0.22 0.8784
    净误差 Pure error 3.60 4 0.90
    总误差 Cor total 200.02 16
    注:**. P<0.01;*. P<0.05。
    下载: 导出CSV

    表  5  鱼肉及酶解物的氨基酸组成

    Table  5.   Amino acid compositions of minced M. miiuy and its hydrolysates mg·g−1

    氨基酸
    Amino acid
    鱼碎肉
    Minced fish
    酶解物
    Hydrolysate
    洗脱组分F4
    Eluent component F4
    天冬氨酸 Asp106.48116.7488.47
    谷氨酸 Glu158.78175.42118.77
    丝氨酸 Ser38.1041.1736.34
    甘氨酸 Gly28.7732.8029.87
    组氨酸 His17.3918.0028.43
    精氨酸 Arg50.5656.4473.54
    苏氨酸 Thr35.8037.8030.41
    丙氨酸 Ala49.2853.0348.38
    脯氨酸 Pro22.7225.2519.57
    酪氨酸 Tyr25.4924.8340.42
    缬氨酸 Val38.7938.2036.32
    蛋氨酸 Met21.3713.8625.15
    半胱氨酸 Cys1.111.241.06
    异亮氨酸 Ile34.9633.8230.40
    亮氨酸 Leu56.6757.3554.74
    苯丙氨酸 Phe27.0425.4039.72
    赖氨酸 Lys66.9173.13118.76
    色氨酸 Trp4.923.047.56
    下载: 导出CSV
  • [1] ZENG Z, LUO J Y, ZUO F L, et al. Screening for potential novel probiotic Lactobacillus strains based on high dipeptidyl peptidase IV and α-glucosidase inhibitory activity[J]. J Funct Foods, 2016, 20: 486-495.
    [2] UJIROGHENE O J, LIU L, ZHANG S, et al. α-glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei[J]. Food Chem, 2019, 299: 124985. doi: 10.1016/j.foodchem.2019.124985
    [3] VALENCIA-MEJIA E, BATISTA K A, FERNANDEZ J, et al. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L. )[J]. Food Res Int, 2019, 121: 238-246. doi: 10.1016/j.foodres.2019.03.043
    [4] REN Y, LIANG K, JIN Y Q, et al. Identification and characterization of two novel α-glucosidase inhibitory oligopeptides from hemp (Cannabis sativa L. ) seed protein[J]. J Funct Foods, 2016, 26: 439-450. doi: 10.1016/j.jff.2016.07.024
    [5] VILCACUNDA R, MARTINEZ-VILLALUENGA C, HERNANDEZ-LEDESMA B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd. ) during in vitro simulated gastrointestinal digestion[J]. J Funct Foods, 2017, 35: 531-539. doi: 10.1016/j.jff.2017.06.024
    [6] 董宇婷, 王荣春. 降糖肽的发展现状及研究进展[J]. 生物信息学, 2018, 16(2): 83-89.
    [7] 郎蒙, 李燕, 蒋蔚薇, 等. 响应面优化南极磷虾粉肽制备工艺及α-葡萄糖苷酶抑制活性分析[J]. 上海海洋大学学报, 2021, 31(2): 564-573.
    [8] 林海生, 廖津, 章超桦, 等. 华贵栉孔扇贝酶法制备α-葡萄糖苷酶抑制肽工艺优化[J]. 广东海洋大学学报, 2020, 40(5): 97-104.
    [9] GU X, GAO T, HOU Y K, et al. Identification and characterization of two novel α-glucosidase inhibitory peptides from almond (Armeniaca sibirica) oil manufacture residue[J]. LWT, 2020, 134: 110215. doi: 10.1016/j.lwt.2020.110215
    [10] 黄钦钦, 田亚平. 条斑紫菜蛋白酶解液α-葡萄糖苷酶和DPP-IV抑制活性的表征及肽成分解析[J]. 食品科学, 2020, 41(24): 110-116.
    [11] 孙素玲, 李雪, 顾小红, 等. 鮸鱼肌肉和副产物营养组成分析及评价[J]. 食品与机械, 2020, 36(7): 45-49.
    [12] 户江. 鮸鱼提取物对鲜红虾保鲜效果的研究[J]. 农村经济与科技, 2017, 28(7): 70-72.
    [13] 李庆玲, 霍健聪, 邓尚贵. 响应面法优化鮸鱼鱼松的加工工艺[J]. 食品工业, 2015, 36(6): 101-104.
    [14] 葛雪筠, 周德健, 王斌, 等. 鮸鱼鱼鳔多糖对四氯化碳引起的急性肝损伤的保护作用[J]. 中国海洋大学学报(自然科学版), 2018, 48(9): 74-79,139.
    [15] ZHAO W H, LUO Q B, PAN X, et al. Preparation, identification, and activity evaluation of ten antioxidant peptides from protein hydrolysate of swim bladders of miiuy croaker (Miichthys miiuy)[J]. J Funct Foods, 2018, 47: 503-511. doi: 10.1016/j.jff.2018.06.014
    [16] HE Y, PAN X, CHI C F, et al. Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: preparation, identification, and antioxidant activity evaluation[J]. LWT, 2019, 105: 1-8. doi: 10.1016/j.lwt.2019.01.054
    [17] HARNEDY P A, PARTHSARATHY V, MCLAUGHLIN C M, et al. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: a source of antidiabetic peptides[J]. Food Res Int, 2018, 106: 598-606. doi: 10.1016/j.foodres.2018.01.025
    [18] THEYSGEUR S, CUDENNEC B, DERACINOIS B, et al. New bioactive peptides identified from a tilapia byproduct hydrolysate exerting effects on DPP-IV activity and intestinal hormones regulation after canine gastrointestinal simulated digestion[J]. Molecules, 2020, 26(1): 136-153.
    [19] 侯梦凡, 胡晓, 杨贤庆, 等. 卵形鲳鲹黄嘌呤氧化酶抑制肽的制备及其工艺优化[J]. 食品与发酵工业, 2021, 47(23): 185-192.
    [20] 张玉, 王伟, 张一帆, 等. 响应面法优化蚕蛹蛋白源α-葡萄糖苷酶抑制肽酶解条件[J]. 中国食品学报, 2016, 16(4): 137-144.
    [21] 赵谋明, 马梅, 苏国万, 等. 具有醒酒活性的玉米肽的制备、富集和鉴定[J]. 中国食品学报, 2020, 20(9): 86-94. doi: 10.16429/j.1009-7848.2020.09.011
    [22] 陈宏, 章骞, 陈玉磊, 等. 利用牡蛎制备DPP-Ⅳ抑制肽及其活性分析[J]. 食品科学, 2021, 42(10): 120-126.
    [23] 郑惠娜, 周春霞, 陈志成, 等. 胰酶酶解珍珠贝分离蛋白制备低苯丙氨酸寡肽制品[J]. 食品工业科技, 2016, 37(8): 215-218,224.
    [24] 唐志红, 余良, 贺晓丽, 等. 酶解小龙虾副产物蛋白制备α-葡萄糖苷酶抑制肽的研究[J]. 食品科技, 2021, 46(11): 23-27.
    [25] 于丽娜, 杜德红, 张初署, 等. 响应面法优化微波辅助酶解制备α-葡萄糖苷酶抑制活性肽工艺[J]. 食品工业科技, 2018, 39(4): 117-122+136.
    [26] 胡旭阳, 李维, 孔祥东, 等. 响应面法优化日本黄姑鱼鱼肉免疫活性肽的提取工艺[J]. 食品工业科技, 2019, 40(17): 173-178.
    [27] 包美丽, 杨添植, 张立钢, 等. 双酶法制备马鹿茸降血糖肽工艺优化对α-葡萄糖苷酶的抑制效果[J]. 食品科学, 2017, 38(6): 88-95.
    [28] 李艳敏, 郁书怀, 仝艳军, 等. 裙带菜α-葡萄糖苷酶抑制活性肽的制备[J]. 食品工业科技, 2020, 41(20): 127-134.
    [29] 李佳芸, 王欣之, 韦源青, 等. 马氏珍珠贝软体酶法制备降糖肽的工艺优化及肽段分析[J]. 食品工业科技, 2021, 42(22): 202-211.
    [30] SHARMA S, PRADHAN R, MANICKAVASAGAN A, et al. Production of antioxidative protein hydrolysates from corn distillers solubles: process optimization, antioxidant activity evaluation, and peptide analysis[J]. Ind Crop Prod, 2022, 184: 115107. doi: 10.1016/j.indcrop.2022.115107
    [31] 肖婷, 裘乐芸, 王瑞艳, 等. 甲鱼蛋α-葡萄糖苷酶抑制肽及其纳米运载体的体外胃肠消化特性[J]. 食品科学, 2022, 43(12): 114-121.
    [32] JIN R, TENG X Y, SHANG J Q, et al. Identification of novel DPP-IV inhibitory peptides from Atlantic salmon (Salmo salar) skin[J]. Food Res Int, 2020, 133: 109161. doi: 10.1016/j.foodres.2020.109161
    [33] LIU L L, CHEN J W, LI X. Novel peptides with α-glucosidase inhibitory activity from Changii radix hydrolysates[J]. Process Biochem, 2021, 111: 200-206. doi: 10.1016/j.procbio.2021.08.019
    [34] WEI G Q, ZHAO Q, WANG D D, et al. Novel ACE inhibitory, antioxidant and α-glucosidase inhibitory peptides identified from fermented rubing cheese through peptidomic and molecular docking[J]. LWT, 2022, 159: 113196. doi: 10.1016/j.lwt.2022.113196
    [35] ZHAO Q, WEI G Q, LI K L, et al. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein[J]. LWT, 2022, 156: 113062. doi: 10.1016/j.lwt.2021.113062
    [36] 张廷新, 李富强, 张楠, 等. 降糖肽的制备、生物学效应及其构效关系研究进展[J]. 食品工业科技, 2022, 43(8): 433-442.
    [37] 董宇婷. 燕麦源α-glucosidase抑制肽与DPP-Ⅳ抑制肽的筛选及抑制机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 1-73.
    [38] JIANG M Z, YAN H, HE R H, et al. Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment[J]. Eur Food Res Technol, 2018, 244(11): 1995-2005. doi: 10.1007/s00217-018-3111-7
    [39] WANG J, WU T, FANG L, et al. Anti-diabetic effect by walnut (Juglans mandshurica Maxim. )-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells[J]. J Funct Foods, 2020, 69: 103944.
    [40] WANG R C, ZHAO H X, PAN X X, et al. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein[J]. Food Sci Nutr, 2019, 7(5): 1848-1856. doi: 10.1002/fsn3.1038
    [41] 吴彤. 核桃降血糖活性肽的分离纯化、结构鉴定及降血糖作用机理研究[D]. 长春: 吉林农业大学, 2020: 1-64.
  • 加载中
计量
  • 文章访问数:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-12-19
  • 录用日期:  2022-12-22
  • 网络出版日期:  2022-12-28

目录

    /

    返回文章
    返回