Immune protective efficacy of recombinant vaccine against Aeromonas hydrophila secreted proteins on zebrafish
-
摘要: 嗜水气单胞菌 (Aeromonas hydrophila) 是一种常见的水产致病菌,可引发人畜鱼共患疾病,对水产养殖业造成严重危害,因此预防其传播和感染是当前亟待解决的问题。为开发高效的潜在亚单位疫苗,并为防治嗜水气单胞菌病害提供理论依据,基于前期的研究结果,选取在嗜水气单胞菌强毒株LP-2中表达丰度较高的8种分泌蛋白 (ORF0322、ORF3982、ORF2874、ORF1767、ORF3984、ORF2546、ORF0472、ORF1609) 作为研究目标,首先利用实时荧光定量PCR (qPCR) 技术对其进行基因表达检测,结果发现这8种分泌蛋白在细胞中均可正常表达;然后将这些蛋白进行基因克隆与表达纯化,并将纯化的重组蛋白免疫斑马鱼 (Danio rerio),连续培养28 d后,发现斑马鱼中相关免疫基因均发生上调,说明这些分泌蛋白可引起宿主发生免疫反应;最后,对这8种分泌蛋白进行免疫保护评价,细菌攻毒实验结果显示,其中6种分泌蛋白 (ORF3982、ORF2874、ORF1767、ORF3984、ORF0472、ORF1609) 的相对免疫保护率 (Relative immune protection rate, RPS) 大于50%,可作为候选疫苗开发。Abstract: Aeromonas hydrophila is a prevalent aquatic pathogen that poses a risk to fishery production and can cause zoonotic diseases. Therefore, prevention of transmission and infection of A. hydrophila is a critical issue to address. To develop a potential subunit vaccine and provide a theoretical basis for better preventing and treating A. hydrophila disease, we selected eight secreted proteins (ORF0322, ORF3982, ORF2874, ORF1767, ORF3984, ORF2546, ORF0472 and ORF1609) from an A. hydrophila virulent strain LP-2 based on our previous research. The qPCR test shows that all selected proteins were expressed normally, then they were cloned and purified. The cloned and purified recombinant proteins were administered to zebrafish through injection. After 28 days of immunization, qPCR analysis detects increasing expression of all relevant immune genes in the zebrafish, suggesting that these recombinant proteins were capable of eliciting an immune response. In order to evaluate the immune protection offered by the eight selected secreted proteins, a bacterial challenge experiment was conducted. The results show that six of the secreted proteins (ORF3982, ORF2874, ORF1767, ORF3984, ORF0472, ORF1609) exhibited a relative immune protection rate (RPS) greater than 50%, indicating that they held promise as vaccine candidates against A. hydrophila infection.
-
Key words:
- Aeromonas hydrophila /
- Secreted protein /
- Danio rerio /
- Vaccine /
- Immunoprotection /
- Protein recombination
-
表 1 本研究中选取的分泌蛋白及引物序列
Table 1. Secreted proteins and their primer pairs used in this study
序号
No.基因
Gene蛋白质
Protein核苷酸长度
Nucleotide length/bp蛋白描述
Protein description引物序列 (5'—3')
Primer sequence (5'−3')1 orf0322 ORF0322 1 065 假定蛋白
Hypothetical proteinF: GGGGAATTCATGAGGAATCAGGCTGTCATTTTGT
R: CCCAAGCTTTCAGGGCCTGGTGGGGGCG2 orf3982 ORF3982 543 P型菌毛蛋白 PapA F: AAAGAATTCATGAAAGCTAACAAGAATCTGGTTG
R: CCCAAGCTTTTACTCGTAGGAGAGAGTAAAGTTG3 orf2874 ORF2874 1 866 溶细胞素和溶血素、溶血素、
孔道形成蛋白
Cytolysin and hemolysin,
HlyA, Pore formingF: GGGGAATTCATGAAAAACAAAAAACCACGCAAAT
R: CCCAAGCTTTCAGTGACTGGCCGGTGGC4 orf1767 ORF1767 1 482 假定蛋白
Hypothetical proteinF: AAAGAATTCATGAAGACTTTTAAGGTTTCAATTA
R: AAAAGGCTTTTAGCGGTTGACGTATTCCTCAA5 orf3984 ORF3984 2 748 微生物胶原酶
Microbial collagenaseF: AAAGAATTCATGAACAATCTGGGTACCAGGTT
R: AAAAGGCTTTCAGTGGGAGGAGTCGTTGG6 orf2546 ORF2546 519 宿主细胞蛋白 Hcp F: CCCGAATTCATGCCAACTCCATGTTATATCAGCA
R: GGGAAGCTTTTACGCCTCGATCGGCGCA7 orf0472 ORF0472 930 溶血素 Hemolysin F: GGGGAATTCATGTTTGGCGACAGCCTCTCC
R: CCCAAGCTTTCAGTGGGCGAGGAACTCGTAT8 orf1609 ORF1609 1 875 假定细胞外丝氨酸蛋白酶
Putative extracellular serine proteaseF: GGGGAATTCATGAGAAAAACATCGTTAGCGTTGG
R: CCCAAGCTTTCATGAGCGGGCGGCATCG表 2 免疫相关基因表达的引物
Table 2. Primers for expression of immune-related genes
序号
No.基因
Gene引物序列 (5'—3')
Primer sequence (5'−3')1 Lyz F: GATTTGAGGGATTCTCCATTGG
R: CCGTAGTCCTTCCCCGTATCA2 IL1β F: TGGACTTCGCAGCACAAAATG
R: GTTCACTTCACGCTCTTGGATC3 MHC I F: GGAGTTCACCTTGCTTATGC
R: CCCTCTGACCCATTCTTGT4 MHC II F: TGACTCAACTGTCCGTGATA
R: CCATTAGCCATCTCCATAGTG5 IL8 F: GTCGCTGCATTGAAACAGAA
R: CTTAACCCATGGAGCAGACC6 IL10 F: TCACGTCATGAACGAGATCC
R: CCTCTTGCATTTCACCATATCC7 IL15 F: ACAGAGGAAGAAGCCTACAG
R: GCGATGAAGACGAGAAAGAC -
[1] 沈锦玉. 嗜水气单胞菌的研究进展[J]. 浙江海洋学院学报(自然科学版), 2008(1): 78-86. [2] 杨守明, 王民生. 嗜水气单胞菌及其对人的致病性[J]. 疾病控制杂志, 2006(5): 511-514. [3] LIN L, WANG Y Q, SRINIVASAN R, et al. Quantitative proteomics reveals that the protein components of outer membrane vesicles (OMVs) in Aeromonas hydrophila play protective roles in antibiotic resistance[J]. J Proteome Res, 2022, 21(7): 1707-1717. doi: 10.1021/acs.jproteome.2c00114 [4] 葛慕湘, 张文香, 丁咚. 鱼类嗜水气单胞菌致病性与毒力因子相关性研究进展[J]. 科学养鱼, 2017(10): 59-61. doi: 10.14184/j.cnki.issn1004-843x.2017.10.034 [5] 马碧书, 马丽娜, 林旭瑷, 等. 细菌溶血素毒性和致病机制研究进展[J]. 中国人兽共患病学报, 2018, 34(2): 175-181. doi: 10.3969/j.issn.1002-2694.2018.00.022 [6] 殷海成. 水产动物嗜水气单胞菌病病理分析[J]. 信阳农业高等专科学校学报, 2007, 17(1): 109-111. [7] 尚玉曼, 王恒, 刘静茹, 等. 半滑舌鳎源哈维氏弧菌分泌蛋白HutZ的功能鉴定及免疫原性[J]. 水产学报, 2022, 46(1): 116-125. [8] 陈雪, 可小丽, 卢迈新, 等. 罗非鱼无乳链球菌LrrG蛋白的原核表达及免疫原性分析[J]. 水产学报, 2014, 38(5): 713-721. [9] WANG Y Q, WANG X Y, ALI F, et al. Comparative extracellular proteomics of Aeromonas hydrophila reveals iron-regulated secreted proteins as potential vaccine candidates[J]. Front Immunol, 2019, 10: 256. doi: 10.3389/fimmu.2019.00256 [10] ZHANG L S, CHEN X M, WANG G B, et al. Quantitative proteomics reveals the antibiotics adaptation mechanism of Aeromonas hydrophila under kanamycin stress[J]. J Proteomics, 2022, 264: 104621. doi: 10.1016/j.jprot.2022.104621 [11] ZHANG L S, YAO Z J, TANG H, et al. The lysine acetylation modification in the porin Aha1 of Aeromonas hydrophila regulates the uptake of multi-drug antibiotics[J]. Mol Cell Proteomics, 2022, 21(9): 100248. doi: 10.1016/j.mcpro.2022.100248 [12] LI X Y, LI Z Q, WANG Y Q, et al. Construction of Aeromonas hydrophila acrA deficient strain and determination of its physiological function[J]. Biotechnol Bull, 2020, 36(11): 63-69. [13] LI Z, ZHANG L S, SUN L N, et al. Proteomics analysis reveals the importance of transcriptional regulator slyA in regulation of several physiological functions in Aeromonas hydrophila[J]. J Proteomics , 2021, 244: 104275. doi: 10.1016/j.jprot.2021.104275 [14] WANG Y Q, CHEN H R, GUO Z, et al. Quantitative proteomic analysis of iron-regulated outer membrane proteins in Aeromonas hydrophila as potential vaccine candidates[J]. Fish Shellfish Immunol, 2017, 68: 1-9. doi: 10.1016/j.fsi.2017.07.002 [15] GUO Z, LIN Y, WANG X Y, et al. The protective efficacy of four iron-related recombinant proteins and their single-walled carbon nanotube encapsulated counterparts against Aeromonas hydrophila infection in zebrafish[J]. Fish Shellfish Immunol, 2018, 82: 50-59. doi: 10.1016/j.fsi.2018.08.009 [16] ZHANG Z, WU H Z, XIAO J, et al. Immune responses of zebrafish (Danio rerio) induced by bath-vaccination with a live attenuated Vibrio anguillarum vaccine candidate[J]. Fish Shellfish Immunol, 2012, 33(1): 36-41. doi: 10.1016/j.fsi.2012.03.031 [17] 王增福, 谢红梅, 张静. 水产动物嗜水气单胞菌病研究进展[J]. 水利渔业, 2002(2): 18-19. doi: 10.3969/j.issn.1003-1278.2002.02.009 [18] 江金伦. 一起由嗜水气单胞菌引起腹泻的调查[J]. 上海预防医学, 2010, 22(1): 31-32. doi: 10.3969/j.issn.1004-9231.2010.01.015 [19] 汪迎春. 抗生素在水产养殖中的应用存在的问题及对策[J]. 江西水产科技, 2020(6): 34-35. doi: 10.3969/j.issn.1006-3188.2020.06.014 [20] 孙莉娜, 姚祖杰, 谭礼宁, 等. 嗜水气单胞菌外膜囊泡组分及功能分析[J]. 基因组学与应用生物学, 2015, 34(12): 2617-2623. [21] 孟思好, 孟长明, 陈昌福. 嗜水气单胞菌疫苗的研究现状[J]. 渔业致富指南, 2009(20): 61-62. [22] 姜倩雯, 张丽珊, 李小艳, 等. 单壁碳纳米管载嗜水气单胞菌外膜蛋白亚单位疫苗的研制及免疫效果评价[J]. 水产学报, 2020, 44(9): 1424-1434. [23] YU L Z, LIU F Z, DU L X, An improved approach for rapidly identifying different types of gram-negative bacterial secreted proteins[J]. NS, 2018, 10(5): 168-177. [24] ZHANG W N, LIAO Z C, HU F X, et al. Protective immune responses of recombinant outer membrane proteins OmpF and OmpK of Aeromonas hydrophila in European eel (Anguilla anguilla)[J]. Aquac Res, 2019, 91: 405. [25] DASH P, SAHOO P K, GUPTA P K, et al. Immune responses and protective efficacy of recombinant outer membrane protein R (rOmpR)-based vaccine of Aeromonas hydrophila with a modified adjuvant formulation in rohu (Labeo rohita)[J]. Fish Shellfish Immunol, 2014, 39(2): 512-523. doi: 10.1016/j.fsi.2014.06.007 [26] 岳慧贤, 程安春, 刘马峰. 革兰氏阴性菌TonB-ExbB-ExbD复合物的功能、作用机制、分布及进化[J]. 中国生物化学与分子生物学报, 2019, 35(2): 146-155. [27] 程逸文, 安琪, 张萌萌, 等. 羊源多杀性巴氏杆菌ExbD基因克隆、原核表达及生物信息学分析[J]. 畜牧与兽医, 2020, 52(5): 107-111. [28] 王宁宁, 郑文彧, 孙宏宇, 等. 棘阿米巴HSP20蛋白的原核表达及免疫原性鉴定[J]. 中国病原生物学杂志, 2020, 15(11): 1283-1288. [29] DOUGLAS S E, PATRZYKAT A. Antimicrobial peptides: cooperative approaches to protection[J]. Protein Peptide Lett, 2005, 12(1): 19-25. doi: 10.2174/0929866053406057 [30] 王蓓, 李桂欢, 王培, 等. 罗非鱼源无乳链球菌溶血素基因体外表达及其免疫原性[J]. 渔业科学进展, 2014, 35(6): 60-67. [31] 张翠娟, 于宙亮, 田莉瑛, 等. 嗜水气单胞菌溶血素基因的克隆表达及其类毒素的免疫原性分析[J]. 生物工程学报, 2009, 25(2): 251-256. doi: 10.3321/j.issn:1000-3061.2009.02.014 [32] 王海丽, 徐公义, 葛长城, 等. 猪链球菌2型溶血素融合蛋白的制备及免疫活性测定[J]. 安徽农业科学, 2011, 39(6): 3604-3605, 3614. doi: 10.3969/j.issn.0517-6611.2011.06.164 [33] 胡秀彩, 李雪, 兰云, 等. 嗜水气单胞菌丝氨酸蛋白酶基因克隆与序列分析[J]. 生物技术, 2014, 24(3): 5-8. [34] SINGH V K, NEWMAN V L, ROMAINE P L P, et al. Radiation countermeasure agents: an update (2011–2014)[J]. Expert Opin Ther Pat, 2014, 24(11): 1229-1255. doi: 10.1517/13543776.2014.964684 [35] 章美娟, 胡治强, 夏瑀培, 等. 类鼻疽杆菌Ⅵ型分泌系统蛋白Hcp1的重组表达及免疫学性质鉴定[J]. 第三军医大学学报, 2020, 42(23): 2296-2301. -