留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钝缀锦蛤规模化人工育苗技术研究

张柯馨 罗泽鑫 张元 展建强 卢怡凝 刘志刚

张柯馨, 罗泽鑫, 张元, 展建强, 卢怡凝, 刘志刚. 钝缀锦蛤规模化人工育苗技术研究[J]. 南方水产科学. doi: 10.12131/20220262
引用本文: 张柯馨, 罗泽鑫, 张元, 展建强, 卢怡凝, 刘志刚. 钝缀锦蛤规模化人工育苗技术研究[J]. 南方水产科学. doi: 10.12131/20220262
ZHANG Kexin, LUO Zexin, ZHANG Yuan, ZHAN Jianqiang, LU Yining, LIU Zhigang. Study on large-scale artificial seedling breeding technology of Tapes dorsatus[J]. South China Fisheries Science. doi: 10.12131/20220262
Citation: ZHANG Kexin, LUO Zexin, ZHANG Yuan, ZHAN Jianqiang, LU Yining, LIU Zhigang. Study on large-scale artificial seedling breeding technology of Tapes dorsatus[J]. South China Fisheries Science. doi: 10.12131/20220262

钝缀锦蛤规模化人工育苗技术研究

doi: 10.12131/20220262
基金项目: 2019广西创新驱动发展专项资金 (桂科AA19254032-3)
详细信息
    作者简介:

    张柯馨 (1998—),女,硕士研究生,研究方向为贝类遗传育种与增养殖。E-mail: 2190678425@qq.com

    通讯作者:

    刘志刚 (1963—),男,教授,研究方向为贝类遗传育种与增养殖。E-mail: Liuzg919@126.com

  • 中图分类号: S 917.4

Study on large-scale artificial seedling breeding technology of Tapes dorsatus

  • 摘要: 基于钝缀锦蛤 (Tapes dorsatus) 规模化养殖面临的种苗供应问题,采用单因素对比实验法,开展了钝缀锦蛤苗种繁育关键技术研究,为其种苗大规模培育提供参考。结果表明:1) 在人工控温条件下,采用虾塘复合藻代替纯种单胞藻对亲本进行促熟,促熟率比对照组提高了282.6%。2) 通过升温加阴干诱导等一系列措施进行催产,亲贝催产率比对照组提高了50.9%。3) 通过添加益生菌构建有益微生态系统,育苗期间不换水,幼虫浮游期成活率、生长速度和稚贝育成率等指标均显著高于对照组。4) 采用立体采苗器结合池底进行立体附苗,稚贝育成率和单位面积产量分别提高了76.6%和76.5%。5) 按体质量5%上选的亲贝作为选育组,稚贝的壳长、体质量和稚贝育成率分别比对照组提高了6.67%、17.03%和8.43%;壳长和体质量变异系数分别降低了29.13%和55.29%;稚贝期壳长和体质量的现实遗传力“h2”分别达到0.65和0.72。采用研究建立的集成创新技术进行钝缀锦蛤人工育苗,可获得显著的经济效益,为实现种苗的规模化生产奠定了基础。
  • 图  1  钝缀锦蛤幼虫期至稚贝期生长曲线

    Figure  1.  Growth curve of larval and juvenile stages of T. dorsatus

    表  1  钝缀锦蛤两个发育群体性状参数

    Table  1.   Traits parameters of two T. dorsatus developmental populations

    性状参数Traits parameter壳长Shell length/mm壳高Shell height/mm壳宽Shell width/mm体质量Body mass/g
    非选育繁育群体Non-selective breeding population 64.9±3.8 (5.86) 43.6±2.5 (5.73) 26.3±0.22 (8.37) 31.6±4.8 (15.19)
    选育繁育群体Selective breeding population 70.9±1.7 (2.52) 47.6±1.2 (2.52) 28.7±0.7 (2.44) 38.8±3.3 (8.51)
    性状选择差Selection differential of traits (S) 6.0 4.0 2.4 7.2
    注:括号里的数值表示繁育群体各性状的变异系数 (%)。 Note: The values in parentheses are the variable coefficients (%) of each trait of breeding population.
    下载: 导出CSV

    表  2  封闭式育苗采用不同微生物制剂的育苗效果对比

    Table  2.   Effects of different microbial agents on closed seedling breeding

    组别  Group  浮游期成活率Survival rate in pelagic period/%幼虫生长速度Larval growth rate/(μm·d−1)稚贝育成率Juvenile rearing rate/%出池稚贝壳长Juvenile shell of length out-of-pool spats/mm
    实验组 Test group 89.3±2.91a 9.33±0.25a 25.60±1.18a 1.31±0.026a
    对照组2 Control group 2 38.6±1.35c (131.3) 7.45±0.21c (25.2) 7.86±0.35c (225.7) 1.03±0.033b (27.2)
    对照组3 Control group 3 67.1±2.02b (33.1) 8.05±0.22b (15.9) 10.52±0.42b(143.3) 1.09±0.030b (20.2)
    注:括号里的数值表示实验组相对于对照组的提高率 (%);同列中不同字母表示存在显著性差异 (P<0.05)。 Note: The values in parentheses are the improvement rates (%) of the test group compared to the control group. Values with different letters within the same column indicate significant differences (P<0.05).
    下载: 导出CSV

    表  3  不同采苗方式的育苗效果对比

    Table  3.   Seedling breeding effects of different seedling collection methods

    指标    
    Index    
    采苗方式
    Seedling collection method
    实验组
    Test group
    对照组4
    Control group 4
    采苗密度
    Seedling density/(万粒·m−2)
    采苗器
    池底
    18.00±0.81(b)
    23.58±1.13a(a)

    46.40±1.51b (−49.2)
    采苗量
    Seedling quantity/(万粒·池−1)
    采苗器
    池底
    合计
    1 749.6±78.6(a)
    707.4±33.9b(b)
    2 457.0±75.6a

    1 392.0±45.3b (−49.2)
    1 392.0±45.3b (76.5)
    稚贝壳长
    Juvenile shell length/mm
    采苗器
    池底
    加权平均
    1.33±0.09(a)
    1.16±0.08a(b)
    1.28

    1.05±0.03b (10.5)
    1.05±0.03 (21.9)
    稚贝育成率
    Juvenile rearing rate/%
    25.6±1.18a 14.5±0.61b (76.6)
    注:上标不同小写字母表示各组之间差异显著 (P<0.05),其中不带括号的为组间分析,带括号的为组内分析;对照组的相应数据后括号内的数值表示实验组相对于对照组的提高率 (%)。 Note: Different lowercase letters indicate significant differences among the groups (P<0.05). Those without parentheses are between-group analyses, and those with parentheses are within-group analyses. The values in parentheses after the control group indicate the improvement rate (%) of the test group compared to the control group.
    下载: 导出CSV

    表  4  选育与不选育的育苗效果对比

    Table  4.   Comparison of seedling breeding effects between selection breeding and non-selection breeding

    组别 Group壳长Shell length/mm体质量Body mass/mg壳长变异系数Variable coefficient of shell length/%体质量变异系数Variable coefficient of body mass/%稚贝育成率Juvenile rearing rate/%
    实验组稚贝 Test group juvenile 1.28±0.03a 2.13±0.11a 7.81 5.16 25.60±1.18a
    对照组1稚贝 Control group 1 juvenile 1.20±0.06b (6.67) 1.82±0.21b (17.03) 11.02 (−29.13) 11.54 (−55.29) 23.61±1.12a (8.43)
    选择反应 Selective reaction 1.33 1.48
    现实遗传力 h2 0.65 0.72
    注:括号里的数值表示实验组相对于对照组的提高率 (%);同列中不同字母表示存在显著性差异 (P<0.05)。 Note: The values in parentheses are the improvement rates (%) of the test group compared to the control group. Values with different letters within the same column indicate significant differences (P<0.05).
    下载: 导出CSV

    表  5  钝缀锦蛤幼虫期至稚贝期生长率

    Table  5.   Growth rate in larval and juvenile stages of T. dorsatus

    发育阶段Developmental stage发育时间Development time/d壳长生长率Shell length growth rate/(μm·d−1)壳高生长率Shell height growth rate/(μm·d−1)
    D形幼虫—壳顶初期幼虫D-shape larvae−Early umbo larvae 5.33 9.76 10.38
    壳顶初期幼虫—壳顶中期幼虫Early umbo larvae−Medium term umbo larvae 3 10.63 11.23
    壳顶中期幼虫—壳顶后期幼虫Medium term umbo larvae−Post umbo larvae 4 6.85 7.48
    壳顶后期幼虫—变态期幼虫Post umbo larvae−Metamorphosis larvae 4 3.83 3.93
    变态期幼虫—无管稚贝Metamorphosis larvae−Non siphon juvenile 3 2.03 1.40
    无管稚贝—单管稚贝Non siphon juvenile−Single siphon juvenile 20 12.52 10.99
    单管稚贝—双管稚贝Single siphon juvenile−Double siphon juvenile 10 9.33 9.05
    双管稚贝—实验结束Double siphon juvenile−End of experiment 15 27.10 24.57
    下载: 导出CSV
  • [1] 庄启谦. 中国动物志软体动物门双壳纲帘蛤科[M]. 北京: 科学出版社, 2001: 63-64.
    [2] NELL J A, O'CONNOR W A, HAND R E, et al. Hatchery production of diploid and triploid clams, Tapes dorsatus (Lamarck 1818): a potential new species for aquaculture[J]. Aquaculture, 1995, 130(4): 389-394. doi: 10.1016/0044-8486(95)92761-Q
    [3] 巫旗生, 曾志南, 宁岳, 等. 钝缀锦蛤形态性状对活体质量的影响[J]. 水产科学, 2018, 37(1): 110-114.
    [4] 聂振平, 彭慧婧, 邹杰, 等. 钝缀锦蛤选育群体F2生长性状相关性及遗传力分析[J]. 广西科学, 2020, 27(3): 241-247.
    [5] 黄洋, 杜涛, 杨世平. 钝缀锦蛤生态习性的初步研究[J]. 水产科学, 2008, 27(4): 175-178.
    [6] 杨家林, 邹杰, 彭慧婧. 温度、盐度和体质量对钝缀锦蛤滤食率和同化率的影响[J]. 水产科学, 2019, 38(1): 104-108.
    [7] NELL J A, PATERSON K J. Salinity studies on the clams Katelysia rhytiphora (Lamy) and Tapes dorsatus (Lamarck)[J]. Aquac Res, 1997, 28(2): 115-119. doi: 10.1111/j.1365-2109.1997.tb01023.x
    [8] 张柯馨, 曹楚畑, 刘志刚, 等. 钝缀锦蛤 (Tapes dorsatus) 稚贝的温度和盐度耐受性研究[J]. 海洋学报, 2022, 44(4): 57-64.
    [9] 巫旗生, 祁剑飞, 宁岳, 等. 盐度、pH、氨氮对钝缀锦蛤稚贝生长及存活的影响[J]. 渔业研究, 2021, 43(6): 621-627.
    [10] 巫旗生, 文宇, 曾志南, 等. 钝缀锦蛤繁殖周期和胚胎发育[J]. 中国水产科学, 2017, 24(3): 488-496.
    [11] 张柯馨, 杨尚松, 罗泽鑫, 等. 钝缀锦蛤胚胎、幼虫及稚贝发育观察[J/OL]. 水产科学: 1-12[2022-09-23]. DOI: 10.16378/j.cnki.1003-1111.21125.
    [12] 连昌朋, 吴韬, 王超奇, 等. 广西北海营盘海域钝缀锦蛤 (Tapes conspersus) 卵巢发育、卵子和卵黄发生的研究[J]. 热带海洋学报, 2022, 41(5): 170-179.
    [13] 曾志南, 巫旗生, 文宇, 等. 一种钝缀锦蛤的种苗规模化培育方法: 105075938A[P]. 2015-11-25.
    [14] 彭银辉, 陈瑞芳, 王志成, 等. 钝缀锦蛤的人工育苗方法: 103125415A[P]. 2013-06-05.
    [15] 盛志廉, 陈瑶生. 数量遗传学[M]. 北京: 科学出版社, 2001: 165-169.
    [16] ZHENG H P, ZHANG G F, LIU X, et al. Sustained response to selection in an introduced population of the hermaphroditic bay scallop Argopecten irradians irradians Lamarck (1819)[J]. Aquaculture, 2006, 255(1/2/3/4): 579-585.
    [17] 闫喜武, 张跃环, 霍忠明, 等. 不同地理群体菲律宾蛤仔的选择反应及现实遗传力[J]. 水产学报, 2010, 34(5): 704-710.
    [18] WANG H X, CHAI X L, LIU B Z. Estimation of genetic parameters for growth traits in cultured clam Meretrix meretrix (Bivalvia: Veneridae) using the Bayesian method based on Gibbs sampling[J]. Aquac Res, 2011, 42(2): 240-247. doi: 10.1111/j.1365-2109.2010.02617.x
    [19] 王成东, 聂鸿涛, 鹿瑶, 等. 薄片镜蛤野生群体主要经济性状间的相关性及通径分析[J]. 大连海洋大学学报, 2015, 30(4): 380-385.
    [20] 孙静, 陈明强, 魏海军, 等. 不同地理群体合浦珠母贝双列杂交子代数量性状比较及其相关和通径分析[J]. 南方农业学报, 2020, 51(6): 1451-1461.
    [21] AHMED M, ABBAS G. Growth parameters of the finfish and shellfish juveniles in the tidal waters of Bhanbhore, Korangi Creek and Miani Hor Lagoon[J]. Pak J Zool, 2000, 32(1): 21-26.
    [22] 魏海军, 邓正华, 陈明强, 等. 棕带仙女蛤数量性状的相关与通径分析[J]. 南方水产科学, 2019, 15(6): 34-40.
    [23] 杜美荣, 方建光, 高亚平, 等. 不同贝龄栉孔扇贝数量性状的相关性和通径分析[J]. 水产学报, 2017, 41(4): 580-587.
    [24] 姜成嘉. 虾夷扇贝人工育苗中亲贝促熟技术[D]. 北京: 中国农业科学院, 2009: 18-23.
    [25] 尤颖哲. 波纹巴非蛤亲贝两种促熟方法比较试验[J]. 渔业研究, 2016, 38(6): 481-485.
    [26] MARTINEZ G, PEREZ H. Effect of different temperature regimes on reproductive conditioning in the scallop Argopecten purpuratus[J]. Aquaculture, 2003, 228(1): 153-167.
    [27] 金井丈夫. 浅海完全养殖[M]. 东京: 恒星社厚生阁版, 1976: 117-124.
    [28] KEEMBIYEHETTY C N, WILSON R P. Effect of water temperature on growth and nutrient utilization of sunshine bass (Morone chrysops ♀× Morone saxatilis ♂) fed diets containing different energy/protein ratios[J]. Aquaculture, 1998, 166(1): 151-162.
    [29] 谭杰, 李凤辉, 陈四清, 等. 不同培育水温和饲料对刺参人工促熟效果的影响[J]. 渔业科学进展, 2020, 41(1): 96-103.
    [30] 毛江静, 童巧琼, 曹潇, 等. 厚壳贻贝人工促熟与自然成熟亲贝的肥满度与营养成分比较[J]. 生物学杂志, 2017, 34(5): 53-56. doi: 10.3969/j.issn.2095-1736.2017.05.053
    [31] 张红云. 栉江珧繁殖生物学及人工苗种繁育技术研究[D]. 厦门: 集美大学, 2010: 16-27.
    [32] 李玲蔚, 张哲, 马培振, 等. “海大1号”长牡蛎规模化人工育苗技术的研究[J]. 海洋湖沼通报, 2017(4): 139-144.
    [33] 官俊良. 香港巨牡蛎人工育苗及其两个群体双列杂交的初步研究[D]. 南宁: 广西大学, 2015: 15-23.
    [34] 常亚青. 贝类增养殖学[M]. 北京: 中国农业出版社, 2007: 45.
    [35] 张卫芳. EM菌和酵母细胞壁多糖对淇河鲫养殖及水质的影响[D]. 新乡: 河南师范大学, 2015: 17-23.
    [36] 邓茹, 孟顺龙, 陈家长, 等. EM菌在水产养殖中的应用概述[J]. 中国农学通报, 2020, 36(11): 142-148.
    [37] 武鹏, 赵大千, 蔡欢欢, 等. 3种微生态制剂对水质及刺参幼参生长的影响[J]. 大连海洋大学学报, 2013, 28(1): 21-26.
    [38] WANG Y B, XU Z R, XIA M S. The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds[J]. Fish Sci, 2005, 71(5): 1036-1041. doi: 10.1111/j.1444-2906.2005.01061.x
    [39] EL-HAROUN E R, GODA A S, CHOWDHURY M A K. Effect of dietary probiotic Biogen supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia (Oreochromis niloticus) (L. )[J]. Aquac Res, 2010, 37(14): 1473-1480.
    [40] ZHOU X X, WANG Y B, LI W F. Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities[J]. Aquaculture, 2009, 287(3/4): 349-353.
    [41] 储兰璐, 高建操, 宋黎黎, 等. EM菌对中华绒螯蟹抗氧化性能及非特异性免疫的影响[J]. 淡水渔业, 2021, 51(5): 91-99. doi: 10.3969/j.issn.1000-6907.2021.05.012
    [42] JAYAPRAKASH N S, PAI S S, ANAS A, et al. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems[J]. Dis Aquat Org, 2005, 68(1): 39.
    [43] VIEIRA F N, BUGLIONE C C, MOURINO J P L, et al. Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi[J]. Arq Bras Med Vet Zootec, 2010, 62(3): 631-638. doi: 10.1590/S0102-09352010000300019
    [44] 刘德经, 王家滂, 谢开恩, 等. 西施舌盘架式人工立体采苗[J]. 中国水产科学, 2002, 9(1): 39-42. doi: 10.3321/j.issn:1005-8737.2002.01.009
    [45] 张晓燕, 郑永允, 戚以满, 等. 泥蚶人工育苗立体附苗技术的研究[J]. 齐鲁渔业, 1998(2): 16-19.
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  43
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 修回日期:  2022-12-01
  • 录用日期:  2023-02-08
  • 网络出版日期:  2023-02-20

目录

    /

    返回文章
    返回