Purification effect of searice paddy field on brackish water environment of shrimp culture
-
摘要: 为探索海水稻-对虾塘田生态联作模式中稻田湿地的水环境净化作用,分别开展了稻田净化单元在夏、冬季对虾养殖周期的尾水处理效果研究。夏季试验中,对虾养殖尾水经不同种植密度的海水稻和常规水稻稻田净化处理,6周后各处理尾水中氨氮 (
${\rm{NH}}_4^{\tiny{+}} $ -N)、硝酸盐氮 (${\rm{NO}}_3^{\tiny{-}} $ -N)、亚硝酸盐氮 (NO2-N)、总磷 (TP) 和化学需氧量 (COD 浓度) 均大幅下降,单倍密度海水稻稻田净化效果最好,对应去除率分别为81.6%、68.2%、63.7%、91.0%和29.7%,均显著高于无水稻对照处理 (P<0.05),其中${\rm{NH}}_4^{\tiny{+}} $ -N及可溶性无机氮去除率显著高于常规水稻处理 (P<0.05);冬季试验中,塘田联作塘海水稻收割,池塘进入冬棚养殖,水体中${\rm{NH}}_4^{\tiny{+}} $ -N、${\rm{NO}}_3^{\tiny{-}} $ -N、可溶性无机氮和总悬浮颗粒物 (TPM) 的平均质量浓度分别较单养对照池塘降低了51.5%、40%、36.7%和11.2% (P<0.05);${\rm{NO}}_3^{\tiny{-}} $ -N、TP、COD、颗粒有机物 (POM)、颗粒无机物 (PIM) 的平均质量浓度与对照池塘无显著性差异 (P>0.05)。研究结果表明,海水稻稻田在水稻生长季与非生长季具有相似作用,均具备一定的水质净化能力,有利于维持对虾生长所需的良好水质环境。Abstract: In order to explore the water purification effect of paddy field in the combined pond-paddy field farming system, we analyzed the biofiltration ability of sea rice paddy field in two shrimp culture seasons (Summer and winter). In the summer trial, the tail water of shrimp culture was purified by sea rice and common rice paddy fields with different planting densities, and the purification efficiency of sea rice paddy fields with standard planting density was the highest. After six weeks, the removal rates of ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total phosphorus and chemical oxygen demand in standard sea rice treatment were 81.6%, 68.2%, 63.7%, 91.0% and 29.7%, respectively, which were significantly higher than those in the control treatment (P<0.05), and the removal rates of ammonia nitrogen and total inorganic nitrogen were significantly higher than those in the common rice treatment (P<0.05). In the winter trial, sea rice was harvested in the shrimp-rice pond, the average concentrations of ammonia nitrogen, nitrite nitrogen, total inorganic nitrogen and total particulate matter in the shrimp-rice ponds decreased by 51.5%, 40%, 36.7% and 11.2%, respectively, compared with the shrimp monoculture ponds (P<0.05). The average concentrations of nitrate nitrogen, total phosphorus and chemical oxygen demand, particulate organic matter and particulate inorganic matter were not significantly different from those in monoculture ponds (P>0.05). The results show that the sea rice paddy field has certain purification ability in both rice growing season and non-growing season, which helps to maintain a good water environment for shrimp growth. -
表 1 夏季尾水净化试验水质指标
Table 1. Water quality index in summer trial of tail water
水质指标
Water quality index处理
Treatment平均质量浓度
Average mass concentration/(mg·L−1)去除率
Nutrient removal rate氨氮 NH4 +-N R1 0.282±0.033a 0.816±0.019b R2 0.312±0.031a 0.747±0.081ab R3 0.275±0.037a 0.693±0.070a NR 0.423±0.022b 0.520±0.137a 硝酸盐氮 NO3 − -N R1 1.164±0.032a 0.682±0.040b R2 1.159±0.039a 0.560±0.011ab R3 1.231±0.026a 0.482±0.070ab NR 1.433±0.104b 0.456±0.030a 亚硝酸盐氮 NO2 − -N R1 1.292±0.038a 0.637±0.026b R2 1.316±0.044a 0.590±0.022b R3 1.295±0.023a 0.546±0.031b NR 1.335±0.010a 0.435±0.039a 可溶性无机氮 DIN R1 2.737±0.086a 0.681±0.007c R2 2.787±0.113a 0.598±0.0040bc R3 2.800±0.018a 0.541±0.036ab NR 3.191±0.104b 0.458±0.038a 总磷 TP R1 0.068±0.001a 0.910±0.009b R2 0.073±0.002ab 0.832±0.039ab R3 0.077±0.003b 0.756±0.123ab NR 0.086±0.002c 0.632±0.050a 化学需氧量 COD R1 4.921±0.065a 0.297±0.032b R2 4.947±0.224a 0.317±0.032b R3 4.966±0.201a 0.313±0.035b NR 5.346±0.110a 0.184±0.023a 注:R1.海水稻单倍密度种植组;R2. 海水稻1.5 倍密度种植组;R3. 常规水稻单倍密度种植组;NR. 无水稻对照处理组。相同指标同列不同字母的两项间差异显著 (P<0.05);后表同此。 Note: R1. Single density planting group of seawater rice; R2. 1.5 times density planting group of seawater rice; R3. Conventional rice single density planting group; NR. Non rice control treatment group. There are significant differences between two items with different letters for the same index within the same column (P<0.05). The same case in the following table. 表 2 海水稻-对虾联作池塘冬季试验水质指标
Table 2. Water quality index in winter trial of pond-paddy field combined farming
水质指标
Water quality index池塘模式
Type of pond平均质量浓度
Average mass concentration/(mg·L−1)极差
Vmax−Vmin/(mg·L−1)氨氮 NH4 +-N 对照塘 0.511±0.037b 0.923±0.126a 试验塘 0.248±0.044a 0.594±0.113a 硝酸盐氮 NO3 −-N 对照塘 0.309±0.039a 0.717±0.112a 试验塘 0.284±0.019a 0.586±0.120a 亚硝酸盐氮 NO2 −-N 对照塘 0.375±0.038b 0.930±0.161b 试验塘 0.225±0.011a 0.488±0.039a 可溶性有机氮 DIN 对照塘 1.195±0.048a 2.262±0.221a 试验塘 0.756±0.049b 1.451±0.162b 总磷 TP 对照塘 0.105±0.003a 0.127±0.025a 试验塘 0.128±0.002a 0.196±0.042a 化学需氧量 COD 对照塘 5.593±0.141a 1.817±0.051a 试验塘 5.141±0.174a 2.189±0.453a 总悬浮颗粒物 TPM 对照塘 39.223±1.086b 48.516±4.693a 试验塘 34.808±0.455a 30.007±0.681a 颗粒有机物 POM 对照塘 11.877±0.341a 20.522±1.303a 试验塘 10.743±0.732a 15.96±1.401a 颗粒无机物 PIM 对照塘 26.602±1.116a 48.002±3.138b 试验塘 23.747±1.239a 33.624±1.515a -
[1] 康保超, 雷莹, 张亚楠, 等. 南美白对虾两种养殖模式下的经济效益比较分析[J]. 中国渔业经济, 2014, 32(6): 64-69. doi: 10.3969/j.issn.1009-590X.2014.06.009 [2] 孙万胜, 付志茹, 张玲, 等. 海水池塘养殖南美白对虾产排污状况调查[J]. 中国水产, 2022, 65(8): 24-26. [3] 孙成波, 李义军, 李婷, 等. 凡纳滨对虾精养池养殖水体的富营养状况时空差异[J]. 热带生物学报, 2013, 4(2): 105-110. doi: 10.3969/j.issn.1674-7054.2013.02.001 [4] HERBECK L S, UNGER D, WU Y, et al. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophi-cation in coastal and back-reef waters of NE Hainan, tropical China[J]. Cont Shelf Res, 2013, 57: 92-104. doi: 10.1016/j.csr.2012.05.006 [5] 宁立, 王宾, 刘威, 等. 生物浮床调控水质技术试验与分析[J]. 中国水产, 2013, 56(6): 56-58. [6] 裴鹏兵, 杜虹, 黄晓颖, 等. PET净水栅对虾池养殖生态环境的影响研究[J]. 南方水产科学, 2017, 13(4): 42-51. doi: 10.3969/j.issn.2095-0780.2017.04.006 [7] 张凯, 李志斐, 谢骏, 等. 生态基对大口黑鲈池塘养殖系统水质及能量收支的影响研究[J]. 南方水产科学, 2018, 14(5): 53-59. doi: 10.3969/j.issn.2095-0780.2018.05.007 [8] 钟晓辉, 张平, 汪小平. 人工湿地污水处理技术及其在我国发展的现状与前景[J]. 华东科技(综合), 2021, 39(8): 267-288. [9] 李松, 梁新强, 王飞儿, 等. 稻田湿地处理农村生活污水除磷试验研究[J]. 环境科学与技术, 2010, 33(12): 75-79. [10] 冯金飞, 李凤博, 吴殿星, 等. 稻作系统对淡水养殖池塘富营养化的修复效应及应用前景[J]. 生态学报, 2014, 34(16): 4480-4487. [11] 薛利红, 杨林章. 太湖流域稻田湿地对低污染水中氮磷的净化效果[J]. 环境科学研究, 2015, 28(1): 117-124. [12] 竺平, 张开惠, 宋德玉, 等. 荆州市稻虾共作生产现状、存在问题与建议[J]. 基层农技推广, 2019, 7(3): 101-103. [13] 李凤博, 冯金飞, 周锡跃, 等. 鱼塘种稻对养殖水体营养物质的去除作用研究[J]. 中国水稻科学, 2015, 29(2): 174-180. doi: 10.3969/j.issn.1001-7216.2015.02.009 [14] 王建飞, 陈宏友, 杨庆利, 等. 盐胁迫浓度和胁迫时的温度对水稻耐盐性的影响[J]. 中国水稻科学, 2004, 18(5): 449-454. doi: 10.3321/j.issn:1001-7216.2004.05.013 [15] 朱孔志, 卢俊, 陈锦珠, 等. 适合江苏盐渍化中低产田种植的水稻品种(系)筛选[J]. 江苏农业科学, 2019, 47(24): 40-43. [16] 陈俏媛, 李斯琪, 梁慧琳, 等. 海水稻的栽培与价值[J]. 农技服务, 2016, 33(6): 19. [17] 李佳伟, 郭桂纯. 把海洋变粮仓的“海水稻”[J]. 环境, 2015, 38(1): 67-68. doi: 10.3969/j.issn.0257-0300.2015.01.023 [18] 陈雨生, 王平, 王克响, 等. 我国海水稻产业发展的战略选择[J]. 中国海洋大学学报, 2018, 31(1): 50-54. [19] KARABA A, DIXIT S, GRECO R, et al. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene[J]. P Natl Acad Sci USA, 2007, 104(39): 15270-15275. doi: 10.1073/pnas.0707294104 [20] ISLAM M R, SARKER M R A, SHARMA N, et al. Assessment of adaptability of recently released salt tolerant rice varieties in coastal regions of South Bangladesh[J]. Field Crop Res, 2016, 190: 34-43. doi: 10.1016/j.fcr.2015.09.012 [21] SINGH A K, ANSARI M W, PAREEK A, et al. Raising salinity tolerant rice: recent progress and future perspectives[J]. Physiol Mol Biol Pla, 2008, 14(1/2): 137-154. [22] 曾毅夫, 邱敬贤, 刘君, 等. 人工湿地水处理技术研究进展[J]. 湿地科学与管理, 2018, 14(3): 62-65. doi: 10.3969/j.issn.1673-3290.2018.03.15 [23] SANSANAYUTH P, PHADUNGCHEP A, NGAMMONTHA S, et al. Shrimp pond effluent: pollution problems and treatment by constructed wetland[J]. Water Sci Technol. 1996, 34(11): 93-98. [24] 郭焕晓, 马牧源, 孙红文. 中国北部沿海高盐度地区人工湿地植物研究[J]. 铁道工程学报, 2006, 23(9): 6-9. doi: 10.3969/j.issn.1006-2106.2006.09.002 [25] 尚克春, 刘宪斌, 陈晓英. 高盐废水人工湿地处理中耐盐植物的筛选[J]. 农业资源与环境学报, 2014, 31(1): 74-78. [26] 张超超, 李长玲, 曾奇韬, 等. 白骨壤人工湿地对模拟对虾养殖废水处理效果及细菌群落组成的影响[J]. 广东海洋大学学报, 2019, 39(3): 70-78. doi: 10.3969/j.issn.1673-9159.2019.03.010 [27] 张弘杰, 过梓栩, 赵大勇, 等. 基于稻田湿地的循环水养殖系统水质变化[J]. 环境科学与技术, 2020, 43(S1): 159-164. [28] 袁星, 林彦彦, 黄建荣, 等. 海马齿生态浮床对海水养殖池塘的修复效果[J]. 安徽农业科学, 2016, 44(14): 69-75. doi: 10.3969/j.issn.0517-6611.2016.14.025 [29] 陈家长, 孟顺龙, 胡庚东, 等. 空心菜浮床栽培对集约化养殖鱼塘水质的影响[J]. 生态与农村环境学报, 2010, 26(2): 155-159. doi: 10.3969/j.issn.1673-4831.2010.02.011 [30] 赵琦. 水稻氮肥利用效率的研究进展[J]. 中国稻米, 2016, 22(6): 15-19. doi: 10.3969/j.issn.1006-8082.2016.06.004 [31] 杨秀霞, 燕辉, 商庆银, 等. 氮素形态及水分胁迫对水稻根系水分吸收的影响机制[J]. 湖北农业科学, 2018, 57(21): 51-59. [32] 寇红岩, 冼健安, 郭慧, 等. 亚硝酸盐对虾类毒性影响的研究进展[J]. 海洋科学, 2014, 38(2): 107-115. [33] 傅纯洁, 尼倩, 葛溧, 等. 氨氮对对虾毒性的风险评估[J]. 水产养殖, 2019, 40(2): 40-43. doi: 10.3969/j.issn.1004-2091.2019.02.015 [34] 沈桂宇. 主要污染因子对虾蟹健康影响的研究进展[J]. 饲料工业, 2013, 34(22): 47-51. [35] LI T, ZHANG B, ZHU C B, et al. Effects of an ex situ shrimp-rice aquaponic system on the water quality of aquaculture ponds in the Pearl River estuary, China[J]. Aquaculture, 2021, 545: 737179. doi: 10.1016/j.aquaculture.2021.737179 [36] 陈壁波, 黄璇卿, 曾运萍. 虾类养殖水体水质及底泥条件对养殖生态系统的影响[J]. 黑龙江生态工程职业学院学报, 2018, 31(5): 15-18. doi: 10.3969/j.issn.1674-6341.2018.05.008 [37] 包特力根白乙. 中国鱼-稻模式生态渔业: 发展历程·生产效益·服务功能[J]. 生态经济, 2012, 28(2): 120-126. doi: 10.3969/j.issn.1671-4407.2012.02.028 -