Fishing characteristics of light fishing vessels in open South China Sea based on Beidou position data
-
摘要: 灯光罩网是中国南海外海主要捕捞作业方式之一。为加强对南海外海灯光罩网渔船生产监测和渔船捕捞活动的有效管理,根据2017年2—5月南海外海灯光罩网渔船北斗船位数据,分析定位时间、经纬度等特征,结合作业时间、等深线等采用多层过滤法判断渔船作业状态;通过阈值筛选渔船作业的位置和时间,采用过滤窗修正法对船位点状态进行修正,计算渔船作业时长,并与渔民实际记录的纸质捕捞日志进行对比分析。结果表明:北斗船位数据提取结果和渔民实际记录的结果误差较小,航次准确率为100%,航次天数准确率为94.30%;相同作业日期准确率为92.72%;作业时长总平均绝对误差为1.12 h,平均相对误差为2.1%,具有较好的一致性。研究设计的灯光罩网渔船状态判断、作业位置确定、作业时长提取和捕捞努力量计算方法可为灯光罩网作业分析和其捕捞强度量化提供新思路。Abstract: Light falling-net is one of the main fishing operations in the open South China Sea. In order to strengthen the monitoring of the production of light falling-nets in the open South China Sea and the effective management of fishing activities of fishing vessels, we had analyzed the positioning time, longitude and latitude and other characteristics based on the Beidou position data of the open South China Sea light fishing vessels from February to May 2017. Combined with the operation time, contour line, etc., we applied the multi-layer filtration method to determine the operation state of the fishing vessels. Then we filtered the fishing vessel operating locations and time by threshold, used the filter window correction method to correct the state of vessels, calculated the operation time of fishing vessels, and compared with the fishing logbook recorded by fishermen. The results show that the error between the extracted results by Beidou position data and the actual results recorded by fishmen was small. The voyage accuracy operation was 100%, and the accuracy of voyage days was 94.30%. The accuracy rate of the same fishing date was 92.72%. The total average absolute error of the operation time was 1.12 h, and the average relative error was 2.1% with good consistency. The methods of judging the state of the light fishing-net vessels, determining the operation location, extracting the operation time and calculating the fishing effort provide new ideas for the analysis of the light fishing-net vessel and the quantification of its fishing intensity.
-
Key words:
- Light fishing-net vessel /
- Beidou position data /
- Operation state /
- open South China Sea
-
表 1 灯光罩网渔船状态划分
Table 1. State division of light-net fishing vessels
阶段划分Stage division 渔船状态State of vessel 持续时间Duration 备注Remark 航行Navigation 快速航行 视渔场距离而定 作业Fishing 开灯诱鱼 放锚阻滞 2.0~3.0 h 夜间,使用水锚阻滞,使渔船对水移动停止,渔船随海流漂移。 熄灯放网 5 min 起网收渔获 25 min 转场Cruising 快速航行 驶往下一个作业点,与航行状态相同,但不收回撑开的臂杆。 停航休息Stopping 放锚阻滞 白天,放水锚,随海流漂移。 表 2 灯光罩网渔船航次信息
Table 2. Voyage information of light-net fishing vessels
船名Vessel name 航次Voyage 时间Time 出海时间Fishing time/d 记录时间Recored time/d 差值Difference/d 准确率Accuracy rate/% 桂北渔 62666Guibeiyu 62666 第1航次 2月6日8:11—3月27日19:20 49 44 5 89.80 第2航次 4月10日19:03—5月30日24:00 51 50 1 98.04 桂北渔 61999Guibeiyu 61999 第1航次 2月4日11:12—4月5日10:59 60 55 5 91.67 第2航次 4月14日19:20—5月30日22:01 46 45 1 97.83 桂北渔 36288Guibeiyu 36288 第1航次 2月15日11:42—4月3日9:48 46 41 5 89.13 第2航次 4月14日13:47—5月30日23:03 47 46 1 97.87 合计 Total 298 281 17 94.30 表 3 捕捞日志和北斗船位提取日期比较
Table 3. Comparison of extraction date of fishing logbook and Beidou position
船名
Vesssel name天数
Day/d捕捞日志有记录
北斗提取有记录
Have fishing logbook and Beidou data/d捕捞日志无记录
北斗提取无记录
No fishing logbook and no Beidou data/d捕捞日志有记录
北斗提取无记录
Have fishing logbook but without Beidou data/d捕捞日志无记录
北斗提取有记录
No fishing logbook but have Beidou data/d桂北渔 36288 Guibeiyu 36288 94 75 11 3 5 桂北渔 61999 Guibeiyu 61999 107 90 13 1 3 桂北渔 62666 Guibeiyu 62666 101 86 5 5 5 合计 total 302 251 29 9 13 表 4 记录作业时长和提取作业时长的对比
Table 4. Comparison of recorded and extracted operation time h
均值Mean value 中值Mid-value 众数Mode value 极小值Minimal value 极大值Maximum value 记录作业时长Recorded operation time 9.19 9.50 9.50 8.50 9.50 提取作业时长Extracted operation time 8.69 9.50 9.80 3.00 10.00 绝对误差Absolute error 1.12 0.60 0.10 0.00 6.50 -
[1] 张俊, 邱永松, 陈作志, 等. 南海外海大洋性渔业资源调查评估进展[J]. 南方水产科学, 2018, 14(6): 118-127. doi: 10.12131/20180037 [2] 邹建伟, 陈立峰, 林蒋进, 等. 南海外海灯光罩网主要渔场分布及变动研究——基于广西渔船的生产监测统计[J]. 南方水产科学, 2014, 10(4): 78-84. doi: 10.3969/j.issn.2095-0780.2014.04.013 [3] 关欢欢, 黄海广, 姜思宁. 基于VMS轨迹数据分析的渔业船舶行为划分研究[J]. 中国渔业经济, 2020, 38(2): 119-126. doi: 10.3969/j.issn.1009-590X.2020.02.014 [4] 季民, 靳奉祥, 李云岭, 等. 远洋渔船动态监控系统研究[J]. 测绘科学, 2005(5): 92-94. doi: 10.3771/j.issn.1009-2307.2005.05.033 [5] WEI Z K, XIE X L, LYU W H. Self-adaption vessel traffic behaviour recognition algorithm based on multi-attribute trajectory characteristics[J]. Ocean Eng, 2020, 198(C): 106995. [6] GALOTTO-TEBAR M M, POMARES-PADILLA A, CZERWINSKI I A, et al. Is the vessel fishing? Discrimination of fishing activity with low-cost intelligent mobile devices through traditional and heuristic approaches[J]. Expert Syst Appl, 2022, 200: 117091. doi: 10.1016/j.eswa.2022.117091 [7] DENG R, DICHMONT C, MILTON D, et al. Can vessel monitoring system data also be used to study trawling intensity and population depletion? The example of Australia's northern prawn fishery[J]. Can J Fish Aquat Sci, 2005, 62(3): 611-622. doi: 10.1139/f04-219 [8] BASTARDIE F, NIELSEN J R, ULRICH C, et al. Detailed mapping of fishing effort and landings by coupling fishing logbooks with satellite-recorded vessel geo-location[J]. Fish Res, 2010, 106(1): 41-53. doi: 10.1016/j.fishres.2010.06.016 [9] UTAMA F W, HOENNER X, HARDESTY B D, et al. Estimating fishing effort and spatio-temporal distribution of longline vessels in the Indian Ocean[J]. Front Mar Sci, 2021, 8: 671036. doi: 10.3389/fmars.2021.671036 [10] MUENCH A, DEPIPER G S, DEMAREST C. On the precision of predicting fishing location using data from the vessel monitoring system (VMS)[J]. Can J Fish Aquat Sci, 2017, 75(7): 1036-1047. [11] LI G D, LI D J, XIONG Y, et al. Changes in the resource distribution of Acetes chinensis and patterns of species replacement in Haizhou Bay in summer based on Beidou VMS data[J]. Reg Stud Mar Sci, 2022, 56: 102655. [12] 于杰, 周艳波, 唐振朝, 等. 基于北斗卫星船位监控系统数据的南海双拖渔船作业特征研究[J]. 海洋科学, 2021, 45(10): 40-48. [13] 张荣瀚, 张胜茂, 陈雪忠, 等. 基于北斗船位数据的流刺网网次和方向提取方法研究[J]. 海洋渔业, 2019, 41(2): 169-178. [14] 裴凯洋, 张胜茂, 樊伟, 等. 基于VMS的张网渔船捕捞努力量与网位坐标提取方法[J]. 上海海洋大学学报, 2021, 30(1): 179-188. doi: 10.12024/jsou.20190502647 [15] 谢恩阁, 周艳波, 冯菲, 等. 中国南海外海鸢乌贼灯光罩网渔业CPUE标准化研究[J]. 大连海洋大学学报, 2020, 35(3): 439-446. [16] 温利红, 张衡, 方舟, 等. 不同捕捞方式下印度洋北部鸢乌贼渔场时空分布差异[J]. 上海海洋大学学报, 2021, 30(6): 1079-1089. doi: 10.12024/jsou.20210103264 [17] 张胜茂, 杨胜龙, 戴阳, 等. 北斗船位数据提取拖网捕捞努力量算法研究[J]. 水产学报, 2014, 38(8): 1190-1199. [18] GERRITSEN H, LORDAN C. Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution[J]. ICES J Mar Sci, 2011, 68(1): 245-252. doi: 10.1093/icesjms/fsq137 [19] KATARA I, SILVA A. Mismatch between VMS data temporal resolution and fishing activity time scales[J]. Fish Res, 2017, 188: 1-5. doi: 10.1016/j.fishres.2016.11.023 [20] 张荣瀚, 张胜茂, 樊伟, 等. 基于北斗船位数据的浙江省流刺网捕捞努力量特征分析[J]. 海洋渔业, 2021, 43(5): 618-625. doi: 10.3969/j.issn.1004-2490.2021.05.011 [21] JOO R, BERTRAND S, CHAIGNEAU A, et al. Optimization of an artificial neural network for identifying fishing set positions from VMS data: an example from the Peruvian anchovy purse seine fishery[J]. Ecol Model, 2010, 222(4): 1048-1059. [22] de SOUZA E N, BOERDER K, MATWIN S, et al. Improving fishing pattern detection from satellite AIS using data mining and machine learning.[J]. PLoS One, 2017, 11(7): e0158248. [23] 郑巧玲, 樊伟, 张胜茂, 等. 基于神经网络和VMS的渔船捕捞类型辨别[J]. 南方水产科学, 2016, 12(2): 81-87. doi: 10.3969/j.issn.2095-0780.2016.02.012 [24] 杨胜龙, 张胜茂, 周为峰, 等. 采用AIS计算中西太平洋延绳钓渔船捕捞努力量[J]. 农业工程学报, 2020, 36(3): 198-203. doi: 10.11975/j.issn.1002-6819.2020.03.024 [25] 谢恩阁. 基于海洋环境因子南海外海鸢乌贼渔情预报研究[D]. 上海: 上海海洋大学, 2020: 35-38. [26] 高明远, 张胜茂, 汤先峰, 等. 中国近海捕捞机动渔船航次特征数据挖掘[J]. 大连海洋大学学报, 2021, 36(1): 147-154. doi: 10.16535/j.cnki.dlhyxb.2019-335 [27] 张胜茂, 程田飞, 王晓璇, 等. 基于北斗卫星船位数据提取拖网航次方法研究[J]. 上海海洋大学学报, 2016, 25(1): 135-141. doi: 10.12024/jsou.20150501433 [28] 张胜茂, 樊伟, 张衡, 等. 基于北斗船位数据的海南省渔船航次动态监测与分析[J]. 南方水产科学, 2018, 14(5): 1-10. doi: 10.3969/j.issn.2095-0780.2018.05.001 [29] 李国东, 仲霞铭, 熊瑛, 等. 基于北斗船位数据的渔业信息解译与应用研究——以中国毛虾限额捕捞管理为例[J]. 海洋与湖沼, 2021, 52(3): 746-753. doi: 10.11693/hyhz20201000288 [30] 张胜茂, 唐峰华, 靳少非, 等. 基于北斗卫星数据的拖网渔船状态与网次提取[J]. 渔业信息与战略, 2015, 30(3): 205-211. doi: 10.13233/j.cnki.fishis.2015.03.008 [31] 张胜茂, 张衡, 唐峰华, 等. 基于船位监控系统的拖网捕捞努力量提取方法研究[J]. 海洋科学, 2016, 40(3): 146-153. doi: 10.11759/hykx20140217002 [32] 晏磊, 张鹏, 杨吝, 等. 月相对南海灯光罩网鸢乌贼渔获率的影响分析[J]. 南方水产科学, 2015, 11(3): 16-21. doi: 10.3969/j.issn.2095-0780.2015.03.003 [33] 谢恩阁, 吴洽儿, 周艳波, 等. 基于北斗船位数据灯光罩网渔船作业状态特征的提取和验证[J]. 上海海洋大学学报, 2020, 29(3): 392-400. [34] 史慧敏, 樊伟, 张涵, 等. 基于渔船轨迹的阿根廷滑柔鱼捕捞强度空间分析[J]. 南方水产科学, 2021, 17(6): 1-11. doi: 10.12131/20210010 [35] 陈森, 张鹏, 晏磊, 等. 南海新建钢质罩网渔船渔获组成及渔场分析[J]. 南方水产科学, 2015, 11(5): 125-131. doi: 10.3969/j.issn.2095-0780.2015.05.015 -