Effect of alginate oligosaccharides combined with low magnetic field freezing on structure and properties of myofibrillar protein of silver carp
-
摘要: 为使以鲢 (Hypophthalmichthys molitrix) 为原料的水产预制菜在加工过程中获得良好的保鲜品质,探索了一种新的冷冻方法。研究了0.6% (w) 褐藻寡糖结合2 mT低磁场冷冻对鲢肌原纤维蛋白结构及功能的影响,以−20 ℃下无处理为空白组,在此基础上分别加入褐藻寡糖、褐藻寡糖+低磁场作为实验组,并在−30 ℃下添加褐藻寡糖作为常规冷冻组,同期冷冻鲢肌原纤维蛋白共28 d。通过测定溶解度、浊度、表面疏水性、巯基含量、热稳定性、傅里叶变换红外光谱以及内源性荧光光谱,综合比较冷冻后肌原纤维蛋白的结构和性质。结果表明:−20 ℃下的3种冷冻方式之间浊度无显著性差异;常规冷冻组蛋白质溶解度较高 (94.11%);经褐藻寡糖+低磁场处理后,减少了疏水基团的暴露,表现出较高的总巯基质量摩尔浓度 (15 mmol·kg−1),并能减少色氨酸残基的暴露,有效保护蛋白质的三级结构;傅里叶变换红外光谱显示褐藻寡糖修饰后肌原纤维蛋白变性程度最低,α-螺旋含量较高,二级结构更加稳定。研究表明,0.6% (w) 褐藻寡糖协同低磁场处理可更好地维持鲢肌原纤维蛋白的稳定性,这为褐藻寡糖在冷冻水产品中的应用奠定了基础,并可为进一步研究低磁场冷冻提供参考。Abstract: In order to obtain good preservation quality in the processing of aquatic pre-made products with silver carp (Hypophthalmichthys molitrix) as raw material, we designed a new freezing method. We investigated the structural and functional changes of myofibrillar protein (MP) by freezing alginate oligosaccharides (AO) at a mass fraction of 0.6% with a low magnetic field (LMF) of 2 mT, and used no treatment at −20 ℃ as the blank group. On this basis, we added AO and AO+LMF as the experimental group, added AO as the common freezing (CF) group at −30 ℃, and had frozen the MP for 28 d. By measuring the solubility, turbidity, surface hydrophobicity, sulfhydryl content, thermal stability, Fourier transform infrared spectroscopy and endogenous fluorescence spectroscopy, we comprehensively compared the structure and properties of frozen MP. The results show that there were no significant differences in the turbidity among the three freezing methods at −20 ℃. The protein solubility of CF group was 94.11%. After AO+LMF treatment, the exposure of hydrophobic groups reduced, with a higher total sulfhydryl content of 15 mmol·kg−1, and the exposure of tryptophan residues reduced, which protected its protein tertiary structure effectively. Fourier transform infrared spectroscopy shows that after AO modification and freezing, MP denaturation was the lowest, α-helix content was higher, and secondary structure was more stable. It it showed that 0.6% fucoidan with low magnetic field freezing treatment can better maintain the stability of MP in silver carp, which lays the foundation for the application of AO in frozen aquatic products and provides references for the further research on the low magnetic field freezing.
-
图 1 不同冷冻方式下肌原纤维蛋白的浊度、溶解度和表面疏水性
注:相同颜色方柱上不同字母表示组间存在显著差异(P<0.05);图2同此。
Figure 1. Turbidity, solubility and surface hydrophobicity of myofibrillar protein with different freezing methods
Note: Different letters on the same color bars indicate significant differences among the groups (P<0.05). The same case in Fig. 2.
图 4 不同冷冻方式下肌原纤维蛋白内源性荧光光谱 (a) 和最大荧光强度 (b)
注:方柱上不同字母表示组间存在显著性差异 (P<0.05)。
Figure 4. Endogenous fluorescence spectra (a) and maximum fluorescence intensity (b) of myofibrillar protein with different freezing methods
Note: Different letters on the bars indicate significant differences among the groups (P<0.05).
表 1 不同冷冻方式下肌原纤维蛋白的热变性温度与焓值
Table 1. Thermal denaturation temperature and enthalpy of myofibrillar protein with different freezing methods
组别
GroupΔT/℃ ΔH/(J·kg−1) 空白组 Blank group 55.24±0.97b 6.5±2.8a 褐藻寡糖 AO 52.42±3.64bc 3.7±2.7ab 褐藻寡糖+低磁场 AO+LFM 69.24±2.46a 2.3±1.2b 常规冷冻 CF 49.84±2.29c 1.6±0. 2b 注:不同字母表示不同处理间差异显著 (P<0.05);后表同此。 Note: Different letters indicate significant differences (P<0.05). The same case in the following table. 表 2 不同冷冻方式下肌原纤维蛋白的二级结构变化
Table 2. Change in secondary structure of myofibrillar protein with different freezing methods
% 组别
Groupα-螺旋
α-helixβ-折叠
β-sheetβ-转角
β-turn无规卷曲
Random coil空白组 Blank group 21.78±0.03ab 23.54±0.08a 35.14±0.05a 19.54±0.00a 褐藻寡糖 AO 31.65±0.06a 28.12±0.14a 30.88±0.08a 9.35±0.16a 褐藻寡糖+低磁场 AO+LFM 13.90±0.12b 29.63±0.05a 34.04±0.03a 22.43±0.07a 常规冷冻 CF 23.85±0.02ab 31.37±0.08a 33.05±0.01a 11.73±0.10a -
[1] LEE S, JO K, JEONG H G, et al. Freezing-induced denaturation of myofibrillar proteins in frozen meat[J]. Crit Rev Food Sci, 2022: 2116557. DOI: 10.1080/10408398.2022.2116557. [2] ZHOU H L, JIN Y M, HONG T T, et al. Effect of static magnetic field on the quality of frozen bread dough[J]. LWT, 2022, 154: 112670. doi: 10.1016/j.lwt.2021.112670 [3] 袁琳娜, 李洪军, 王兆明, 等. 新型冷冻和解冻技术在肉类食品中的应用研究进展[J]. 食品与发酵工业, 2019, 45(2): 220-227. doi: 10.13995/j.cnki.11-1802/ts.017211 [4] BI D C, YANG X, LU J, et al. Preparation and potential applications of alginate oligosaccharides[J]. Crit Rev Food Sci, 2022: 2067832. DOI: http://dx.doi.org/10.1080/10408398.2022.2067832. [5] LIU J, YANG S Q, LI X T, et al. Alginate oligosaccharides: production, biological activities, and potential applications[J]. Compr Rev Food Sci F, 2019, 18(6): 1859-1881. doi: 10.1111/1541-4337.12494 [6] ZHUO R L, LI B Q, TIAN S P. Alginate oligosaccharide improves resistance to postharvest decay and quality in kiwifruit (Actinidia deliciosa cv. Bruno)[J]. Hortic Plant J, 2022, 8(1): 44-52. doi: 10.1016/j.hpj.2021.07.003 [7] ZHANG B, WU H X, YANG H C, et al. Cryoprotective roles of trehalose and alginate oligosaccharides during frozen storage of peeled shrimp (Litopenaeus vannamei)[J]. Food Chem, 2017, 228: 257-264. doi: 10.1016/j.foodchem.2017.01.124 [8] 黄菊, 丁晨早, 谢超, 等. 海藻胶低聚寡糖对秘鲁鱿鱼(Peru squid)鱼糜品质特性的影响研究[J]. 海洋与湖沼, 2015, 46(3): 659-664. doi: 10.11693/hyhz20150300073 [9] 娄耀郏, 赵红霞, 李文博, 等. 静磁场对鲤鱼冷冻过程影响的实验[J]. 山东大学学报 (工学版), 2013, 43(6): 89-94. [10] LIN H X, ZHAO S S, HAN X Y, et al. Effect of static magnetic field extended supercooling preservation on beef quality[J]. Food Chem, 2022, 370: 131264. doi: 10.1016/j.foodchem.2021.131264 [11] TANG J Y, ZHANG H N, TIAN C Q, et al. Effects of different magnetic fields on the freezing parameters of cherry[J]. J Food Eng, 2020, 278: 109949. doi: 10.1016/j.jfoodeng.2020.109949 [12] PARK D, XIONG Y L, ALDERTON A L, et al. Biochemical changes in myofibrillar protein isolates exposed to three oxidizing systems[J]. J Agr Food Chem, 2006, 54(12): 4445-4451. doi: 10.1021/jf0531813 [13] LIU R, ZHAO S M, YANG H, et al. Comparative study on the stability of fish actomyosin and pork actomyosin[J]. Meat Sci, 2011, 88(2): 234-240. doi: 10.1016/j.meatsci.2010.12.026 [14] JOO S, KAUFFMAN R, KIM B, et al. The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water-holding capacity in Porcine longissimus muscle[J]. Meat Sci, 1999, 52(3): 291-297. doi: 10.1016/S0309-1740(99)00005-4 [15] RIEBROY S, BENJAKUL S, VISESSANGUAN W, et al. Acid-induced gelation of natural actomyosin from Atlantic cod (Gadus morhua) and burbot (Lota lota)[J]. Food Hydrocoll, 2009, 23(1): 26-39. doi: 10.1016/j.foodhyd.2007.11.010 [16] LIU Q, CHEN Q, KONG B H, et al. The influence of superchilling and cryoprotectants on protein oxidation and structural changes in the myofibrillar proteins of common carp (Cyprinus carpio) surimi[J]. LWT, 2014, 57(2): 603-611. doi: 10.1016/j.lwt.2014.02.023 [17] DERGEZ T, KÖNCZÖL F, KISS M, et al. DSC study on the motor protein myosin in fibre system[J]. Thermochim Acta, 2006, 445(2): 205-209. doi: 10.1016/j.tca.2005.10.005 [18] XIONG Y, LI Q R, MIAO S, et al. Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum[J]. Innov Food Sci Emerg, 2019, 54: 225-234. doi: 10.1016/j.ifset.2019.04.013 [19] CHELH I, GATELLIER P, SANTÉ-LHOUTELLIER V. A simplified procedure for myofibril hydrophobicity determination[J]. Meat Sci, 2006, 74(4): 681-683. doi: 10.1016/j.meatsci.2006.05.019 [20] LIANG Y, GUO B Y, ZHOU A Ms, et al. Effect of high pressure treatment on gel characteristics and gel formation mechanism of bighead carp (Aristichthys nobilis) surimi gels[J]. J Food Process Pres, 2017, 41(5): e13155. doi: 10.1111/jfpp.13155 [21] SHI H B, ZHOU T, WANG X, et al. Effects of the structure and gel properties of myofibrillar protein on chicken breast quality treated with ultrasound-assisted potassium alginate[J]. Food Chem, 2021, 358: 129873. doi: 10.1016/j.foodchem.2021.129873 [22] CAO H W, JIAO X D, FAN D M, et al. Microwave irradiation promotes aggregation behavior of myosin through conformation changes[J]. Food Hydrocoll, 2019, 96: 11-19. doi: 10.1016/j.foodhyd.2019.05.002 [23] FENG X L, WU D, YANG K, et al. Effect of sarcoplasmic proteins oxidation on the gel properties of myofibrillar proteins from pork muscles[J]. J Food Sci, 2021, 86(5): 1835-1844. doi: 10.1111/1750-3841.15687 [24] MIAO W, NYAISABA B M, KODDY J K, et al. Effect of cold atmospheric plasma on the physicochemical and functional properties of myofibrillar protein from Alaska pollock (Theragra chalcogramma)[J]. Int J Food Sci Tech, 2020, 55(2): 517-525. doi: 10.1111/ijfs.14295 [25] DENG S Y, LV L Y, YANG W G, et al. Effect of electron irradiation on the gel properties of Collichthys lucidus surimi[J]. Radiat Phys Chem, 2017, 130: 316-320. doi: 10.1016/j.radphyschem.2016.08.022 [26] ZHUANG X B, HAN M Y, JIANG X P, et al. The effects of insoluble dietary fiber on myofibrillar protein gelation: microstructure and molecular conformations[J]. Food Chem, 2019, 275: 770-777. doi: 10.1016/j.foodchem.2018.09.141 [27] YANG K, ZHOU Y H, GUO J J, et al. Low frequency magnetic field plus high pH promote the quality of pork myofibrillar protein gel: a novel study combined with low field NMR and Raman spectroscopy[J]. Food Chem, 2020, 326: 126896. doi: 10.1016/j.foodchem.2020.126896 [28] SHI L, XIONG G Q, DING A Z, et al. Effects of freezing temperature and frozen storage on the biochemical and physical properties of Procambarus clarkii[J]. Int J Refrig, 2018, 91: 223-229. doi: 10.1016/j.ijrefrig.2018.04.027 [29] 逯晓燕, 刘丽, 黄文哲, 等. 低磁场冷冻对鲢鱼肌原纤维蛋白的作用[J]. 肉类研究, 2022, 36(6): 1-8. [30] ZHANG B, ZHAO J L, CHEN S J, et al. Influence of trehalose and alginate oligosaccharides on ice crystal growth and recrystallization in whiteleg shrimp (Litopenaeus vannamei) during frozen storage with temperature fluctuations[J]. Int J Refrig, 2019, 99: 176-185. doi: 10.1016/j.ijrefrig.2018.11.015 [31] BAO Y, ERTBJERG P, ESTÉVEZ M, et al. Freezing of meat and aquatic food: underlying mechanisms and implications on protein oxidation[J]. Compr Rev Food Sci F, 2021, 20(6): 5548-5569. doi: 10.1111/1541-4337.12841 [32] DU X, LI H J, PAN N, et al. Effectiveness of ice structuring protein on the myofibrillar protein from mirror carp (Cyprinus carpio L.) during cryopreservation: reduction of aggregation and improvement of emulsifying properties[J]. Int J Refrig, 2022, 133: 1-8. doi: 10.1016/j.ijrefrig.2021.10.003 [33] BENJAKUL S, VISESSANGUAN W, THONGKAEW C, et al. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage[J]. Food Res Int, 2003, 36(8): 787-795. doi: 10.1016/S0963-9969(03)00073-5 [34] 郭园园, 孔保华. 冷冻贮藏引起的鱼肉蛋白质变性及物理化学特性的变化[J]. 食品科学, 2011, 32(7): 335-340. [35] LI F F, DU X, REN Y M, et al. Impact of ice structuring protein on myofibrillar protein aggregation behaviour and structural property of quick-frozen patty during frozen storage[J]. Int J Biol Macromol, 2021, 178: 136-142. doi: 10.1016/j.ijbiomac.2021.02.158 [36] ZHANG B, CAO H J, LIN H M, et al. Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage[J]. Food Chem, 2019, 278: 482-490. doi: 10.1016/j.foodchem.2018.11.087 [37] 薛勇, 薛长湖, 李兆杰, 等. 海藻糖对冻藏过程中鳙肌原纤维蛋白冷冻变性的影响[J]. 中国水产科学, 2006, 13(4): 637-641. doi: 10.3321/j.issn:1005-8737.2006.04.020 [38] XU Y J, DONG M, TANG C B, et al. Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties[J]. LWT, 2020, 117: 108664. doi: 10.1016/j.lwt.2019.108664 [39] ZHONG Y Y, HAN P, SUN S L, et al. Effects of apple polyphenols and hydroxypropyl-β-cyclodextrin inclusion complexes on the oxidation of myofibrillar proteins and microstructures in lamb during frozen storage[J]. Food Chem, 2022, 375: 131874. doi: 10.1016/j.foodchem.2021.131874 [40] XU Z Z, HUANG G Q, XU T C, et al. Comparative study on the Maillard reaction of chitosan oligosaccharide and glucose with soybean protein isolate[J]. Int J Biol Macromol, 2019, 131: 601-607. doi: 10.1016/j.ijbiomac.2019.03.101 [41] LIU Y F, OEY I, BREMER P, et al. Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white[J]. Food Res Int, 2017, 91: 161-170. doi: 10.1016/j.foodres.2016.12.005 [42] HAN Z, CAI M J, CHENG J H, et al. Effects of electric fields and electromagnetic wave on food protein structure and functionality: a review[J]. Trends Food Sci Tech, 2018, 75: 1-9. doi: 10.1016/j.jpgs.2018.02.017 [43] XIA M Q, CHEN Y X, MA J, et al. Effects of low frequency magnetic field on myoglobin oxidation stability[J]. Food Chem, 2020, 309: 125651. doi: 10.1016/j.foodchem.2019.125651 [44] DIACONU A, NITA L, CHIRIAC A, et al. Investigation of the magnetic field effect upon interpolymeric complexes formation based on bovine serum albumin and poly (aspartic acid)[J]. Int J Biol Macromol, 2018, 119: 974-981. doi: 10.1016/j.ijbiomac.2018.08.033 -