留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

坛紫菜蛋白的酶法提取及其理化性质

冷檬 林端权 翁凌 张凌晶 缪松 曹敏杰 孙乐常

冷檬, 林端权, 翁凌, 张凌晶, 缪松, 曹敏杰, 孙乐常. 坛紫菜蛋白的酶法提取及其理化性质[J]. 南方水产科学. doi: 10.12131/20220242
引用本文: 冷檬, 林端权, 翁凌, 张凌晶, 缪松, 曹敏杰, 孙乐常. 坛紫菜蛋白的酶法提取及其理化性质[J]. 南方水产科学. doi: 10.12131/20220242
LENG Meng, LIN Duanquan, WENG Ling, ZHANG Lingjing, MIAO Song, CAO Minjie, SUN Lechang. Enzymatic extraction and physicochemical properties of Porphyra haitanensis protein[J]. South China Fisheries Science. doi: 10.12131/20220242
Citation: LENG Meng, LIN Duanquan, WENG Ling, ZHANG Lingjing, MIAO Song, CAO Minjie, SUN Lechang. Enzymatic extraction and physicochemical properties of Porphyra haitanensis protein[J]. South China Fisheries Science. doi: 10.12131/20220242

坛紫菜蛋白的酶法提取及其理化性质

doi: 10.12131/20220242
基金项目: 国家重点研发计划重点专项 (2020YFD0900904-01)
详细信息
    作者简介:

    冷檬:冷 檬 (1996—),男,硕士研究生,研究方向为水产品深加工与蛋白质化学。E-mail: 407960376@qq.com

    通讯作者:

    孙乐常 (1985—),男,副教授,博士,研究方向为水产品深加工与蛋白质化学。E-mail: sunlechang@163.com

  • 中图分类号: TS254.9

Enzymatic extraction and physicochemical properties of Porphyra haitanensis protein

  • 摘要: 鲍鱼内脏中含有丰富的可分解藻类多糖的水解酶。为实现坛紫菜 (Porphyra haitanensis) 蛋白的高效提取和 产业化制备,采用鲍鱼内脏酶对坛紫菜进行酶法破壁提取紫菜蛋白。结果显示,鲍鱼内脏酶酶解坛紫菜提取蛋白的最佳条件为:加酶量7.6%、酶解时间2.8 h、酶解温度35 ℃、料液比质量体积比为1∶25,在该条件下获得的蛋白得率为 (238.65±2.13) mg∙g−1。观察坛紫菜的外观及细胞形态,发现鲍鱼内脏酶能显著破坏坛紫菜细胞壁。冷冻干燥坛紫菜蛋白 (Freeze-dried P. haitanensis protein, FPP) 在不同pH下的溶解性和乳化性能均优于喷雾干燥坛紫菜蛋白 (Spray-dried P. haitanensis protein, SPP) (P<0.01),而SPP的表面疏水性与接触角均高于FPP (P<0.01)。扫描电镜结果显示, FPP为表面光滑的片状结构,而SPP呈大小较为均一、表面有凹槽的球状颗粒。综上,鲍鱼内脏酶能有效破坏坛紫菜细胞壁,使水溶性蛋白溶出,制备得到的蛋白均具有良好的理化特性,其中冷冻干燥所制备蛋白的理化性质更佳。
  • 图  1  加酶量、温度、时间和料液比对鲍鱼内脏酶酶解紫菜的影响

    注:同一序列中不同小写字母表示显著差异 (P<0.05);图3图6图7同此。

    Figure  1.  Effects of enzyme addition, temperature, time and material-to-liquid ratio on enzymatic digestion of P. haitanensis by abalone viscera enzyme

    Note: Different lowercase letters in the same series indicate significant difference (P<0.05). The same case in Fig. 3, Fig. 6 and Fig. 7.

    图  2  加酶量、时间和温度交互作用响应面图和等高线图

    Figure  2.  Response surface and contour plots of enzyme addition, time and temperature interactions

    图  3  不同破壁方式紫菜蛋白得率和固形物得率对比

    Figure  3.  Comparison of protein yield and solids yield of P. haitanensis by different cell wall breaking methods

    图  4  不同破壁方式紫菜外观形态及光学显微镜图片(10×40)

    注:从左到右依次为未处理、溶胀、冻融、超声、鲍鱼内脏酶酶解;a—e为外观形态,f—j为光学显微镜图片。

    Figure  4.  Appearance morphology and optical microscope pictures of P. haitanensis by different cell wall breaking methods (10×40)

    Note: From left to right: untreated, lysed, freeze-thawed, sonicated and abalone visceral enzymatic digestion; a–e are appearance morphology, and f–j are optical microscope images.

    图  5  干燥紫菜蛋白样品及扫面电镜图片

    Figure  5.  Dried P. haitanensis protein sample and SEM images

    图  6  pH对冻干坛紫菜蛋白和喷干坛紫菜蛋白的溶解度和表面疏水性 的影响

    注:同一序列中不同小写字母表示显著差异 (P<0.05) ;图7同此。

    Figure  6.  Effec of pH on solubility and surface hydrophobicity of FPP and SPP

    Note: Different lowercase letters in the same series indicate significant difference (P<0.05). The same case in Fig. 7.

    图  7  pH对冻干坛紫菜蛋白和喷干坛紫菜蛋白乳化性和乳化稳定性的影响

    Figure  7.  Effect of pH on emulsification and emulsion stability of FPP and SPP

    表  1  Box-Behnken Design 设计方案

    Table  1.   Box-Behnken Design solution

    因素 Factor水平 Level
    −101
    A加酶量 Enzyme dosage/%678
    B酶解时间 Enzymolysis time/h123
    C酶解温度 Enzymolysis temperature/℃303540
    下载: 导出CSV

    表  2  鲍鱼内脏酶酶解紫菜响应面实验设计及结果

    Table  2.   Response surface experimental design and results of enzymatic digestion of P. haitanensis by abalone viscera enzyme

    序号
    No.
    A:加酶量
    Enzyme
    dosage/%
    B:时间
    t/h
    C:温度
    Temperature/
    Y:蛋白得率
    Protein yield/
    (mg∙g−1)
    16135158.46
    28135189.04
    36335183.47
    48335242.13
    56230174.96
    68230215.56
    76240168.66
    88240209.65
    97130185.99
    107330219.76
    117140178.40
    127340217.07
    137235229.99
    147235232.14
    157235231.90
    167235226.36
    177235228.45
    下载: 导出CSV

    表  3  回归模型方差分析

    Table  3.   Regression model analysis of variance

    来源
    Source
    平方和
    SS
    自由度
    df
    均方
    MS
    FP显著性
    Sig.
    模型 Model11 105.4091 233.91244.51<0.000 1**
    A3 648.8313 648.83723.04<0.000 1**
    B2 832.7612 832.76561.33<0.000 1**
    C63.27163.2712.540.009 5**
    AB197.041197.0439.040.000 4**
    AC0.03810.0380.007 5540.933 2
    BC5.9915.991.190.312 1
    A22 092.9312 092.93414.93<0.000 1**
    B2849.051849.05168.24<0.000 1**
    C2981.241981.24194.44<0.000 1**
    残差 Residual35.3375.05
    失拟差 Lack of fit11.7533.920.660.616 3不显著
    纯误差 Pure error23.5845.90
    总和 Total11 140.7216
    注:*. 差异显著 (P<0.05);**. 差异极显著 (P<0.01)。 Note: *. Significant difference (P<0.05); **. Extremely significant difference (P<0.01).
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022: 26-29.
    [2] GONG G, ZHAO J, WANG C, et al. Structural characterization and antioxidant activities of the degradation products from Porphyra haitanensis polysaccharides[J]. Process Biochem, 2018, 74: 185-193. doi: 10.1016/j.procbio.2018.05.022
    [3] CAO J, WANG J, WANG S, et al. Porphyra species: Amini-review of its pharmacological and nutritional properties[J]. J Med Food, 2016, 19(2): 111-119. doi: 10.1089/jmf.2015.3426
    [4] 郑彩云, 陈华新, 姜鹏, 等. 藻红蛋白的高效异源生物合成及其生物活性[J]. 生物技术, 2018, 28(2): 164-169.
    [5] LI W, LU L, LIU B, et al. Effects of phycocyanin on pulmonary and gut microbiota in a radiation-induced pulmonary fibrosis model[J]. Biomed Pharmacother, 2020, 132: 110826-110835. doi: 10.1016/j.biopha.2020.110826
    [6] PARDHASARADHI B V, ALI A M, KUMARI A L, et al. Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS[J]. Mol Cancer Ther, 2003, 2(11): 1165-1170.
    [7] FURUTA T, MIYABE Y, YASUI H, et al. Angiotensin I converting enzyme inhibitory peptides derived from phycobiliproteins of Dulse Palmaria palmata[J]. Mar Drugs, 2016, 14(2): 32. doi: 10.3390/md14020032
    [8] LI W, SU H, PU Y, et al. Phycobiliproteins: molecular structure, production, applications, and prospects[J]. Biotechnol Adv, 2019, 37(2): 340-353. doi: 10.1016/j.biotechadv.2019.01.008
    [9] 肖海芳, 马海乐, 孙进良, 等. 不同破壁方法对条斑紫菜藻红蛋白提取效果的影响[J]. 食品研究与开发, 2006(10): 54-56. doi: 10.3969/j.issn.1005-6521.2006.10.017
    [10] 张笛, 曾庆梅, 王琳, 等. 微波辅助酶法提取绞股蓝皂苷工艺优化[J]. 食品科学, 2016, 37(12): 1-6. doi: 10.7506/spkx1002-6630-201612001
    [11] TAO Z, SUN L, QIU X, et al. Preparation, characterisation and use for antioxidant oligosaccharides of a cellulase from abalone (Haliotis discus hannai) viscera[J]. J Sci Food Agric, 2016, 96(9): 3088-3097. doi: 10.1002/jsfa.7484
    [12] TSAO C, PAN Y, JIANG S. Purification and characterization of amylases from small abalone (Sulculus diversicolor aquatilis)[J]. J Agric Food Chem, 2003, 51(4): 1064-1070. doi: 10.1021/jf025837n
    [13] SUZUKI H, SUZUKI K, INOUE A, et al. A novel oligoalginate lyase from abalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner[J]. Carbohydr Res, 2006, 341(11): 1809-1819. doi: 10.1016/j.carres.2006.04.032
    [14] 文嘉欣. 鲍鱼内脏多糖水解酶及对魔芋胶的酶解改性研究[D]. 厦门: 集美大学, 2021: 1-60.
    [15] 王运吉, 刘金珍, 孙勉英, 等. 鲍鱼酶的制备及其性质[J]. 生物化学与生物物理进展, 1990(4): 302-304.
    [16] 孙乐常, 文嘉欣, 曹敏杰, 等. 一种水解紫菜的酶制剂及其制备方法: CN202011317457.7[P]. 2021-04-02.
    [17] 卢亚东, 张成楠, 李秀婷, 等. 不同干燥方式燕麦蛋白的性质及对肌原纤维蛋白凝胶特性的影响[J]. 食品科学技术学报, 2021, 39(6): 11. doi: 10.12301/j.issn.2095-6002.2021.06.007
    [18] SHEN Y, TANG X, LI Y. Drying methods affect physicochemical and functional properties of quinoa protein isolate[J]. Food Chem, 2020, 339(10): 127823.
    [19] LIN N, LIU B, LIU Z, et al. Effects of different drying methods on the structures and functional properties of phosphorylated Antarctic krill protein[J]. J Food Sci, 2020, 85(11): 3690-3699. doi: 10.1111/1750-3841.15503
    [20] 时文芳, 白榕, 吕丽爽, 等. 喷雾干燥和冷冻干燥莲子蛋白结构及其功能特性的比较[J]. 食品科学, 2018, 39(9): 95-101. doi: 10.7506/spkx1002-6630-201809015
    [21] 陶志鹏. 皱纹盘鲍内脏纤维素酶的分离纯化与分子克隆[D]. 厦门: 集美大学, 2014: 1-56.
    [22] SHEN Y, XIAO K, LIANG P, et al. Improvement on the modified Lowry method against interference of divalent cations in soluble protein measurement[J]. Appl Microbiol Biotechnol, 2013, 97(9): 4167-4178. doi: 10.1007/s00253-013-4783-3
    [23] 李云嵌, 杨曦, 刘江, 等. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135. doi: 10.13995/j.cnki.11-1802/ts.025990
    [24] 郑惠彬, 郑温翔, 翁武银. 紫菜酶解物的制备及其特性[J]. 食品工业科技, 2013, 34(15): 107-111. doi: 10.13386/j.issn1002-0306.2013.15.010
    [25] 段杉, 朱伟珊, 吴佳威. 利用纤维素酶辅助提取紫菜藻红蛋白的研究[J]. 水产科学, 2009, 28(5): 280-283. doi: 10.3969/j.issn.1003-1111.2009.05.010
    [26] LATORRES J M, RIOS D G, SAGGIOMO G, et al. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp ( Litopenaeus vannamei )[J]. J Food Sci Technol, 2018, 55(2): 721-729. doi: 10.1007/s13197-017-2983-z
    [27] 江军, 李帝明, 王亚雄, 等. pH值对酸水解卵清蛋白乳化性能的影响[J]. 食品科技, 2021, 46(6): 222-228. doi: 10.13684/j.cnki.spkj.2021.06.036
    [28] 姚兴存, 李静, 舒留泉. 条斑紫菜活性肽的制备及其功能性质研究[J]. 食品研究与开发, 2011, 32(12): 12-15. doi: 10.3969/j.issn.1005-6521.2011.12.004
    [29] ELKSIBI I, HADDAR W, TICHA M B, et al. Development and optimisation of a non conventional extraction process of natural dye from olive solid waste using response surface methodology (RSM)[J]. Food Chem, 2014, 161: 345-352. doi: 10.1016/j.foodchem.2014.03.108
    [30] HOUSTON K, TUCKER M R, CHOWDHURY J, et al. The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions[J]. Front Plant Sci, 2016, 7: 984-1000.
    [31] CHEN F, ZHANG Q, GU H, et al. An approach for extraction of kernel oil from Pinus pumila using homogenate-circulating ultrasound in combination with an aqueous enzymatic process and evaluation of its antioxidant activity[J]. J Chromatogr A, 2016: 68-79.
    [32] SUZUKI K, OJIMA T, NISHITA K. Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai[J]. Eur J Biochem 2003, 270(4): 771-778.
    [33] 田雨, 江艳华, 郭莹莹, 等. 紫菜营养品质及食用价值研究进展[J]. 食品安全质量检测学报, 2021, 12(12): 4929-4936. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.12.033
    [34] GONG K, SHI A, LIU H, et al. Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate[J]. J Food Eng, 2016, 170: 33-40. doi: 10.1016/j.jfoodeng.2015.09.011
    [35] 刘树兴, 郑灿辉, 何颖. 喷雾干燥法制备紫苏油微胶囊[J]. 粮食与油脂, 2019, 32(7): 29-33. doi: 10.3969/j.issn.1008-9578.2019.07.009
    [36] 徐海菊, 冯尚坤, 陈正冬, 等. 坛紫菜蛋白质提取工艺优化及其特性分析[J]. 食品工业科技, 2022, 43(12): 206-214. doi: 10.13386/j.issn1002-0306.2021090055
    [37] WANG Q, JIN Y, XIONG Y L. Heating-aided pH shifting modifies hemp seed protein structure, cross-linking, and emulsifying properties[J]. J Agric Food Chem, 2018, 66(41): 10827-10834. doi: 10.1021/acs.jafc.8b03901
    [38] LIANG H, TANG C. pH-dependent emulsifying properties of pea [Pisum sativum (L. )] proteins[J]. Food Hydrocoll, 2013, 33(2): 309-319. doi: 10.1016/j.foodhyd.2013.04.005
    [39] HALLING P J. Protein-stabilized foams and emulsions[J]. Crit Rev Food Sci Nutr, 1981, 15(2): 155-203. doi: 10.1080/10408398109527315
    [40] LIU F, TANG C. Soy protein nanoparticle aggregates as Pickering stabilizers for oil-in-water emulsions[J]. J Agric Food Chem, 2013, 61(37): 8888-8898. doi: 10.1021/jf401859y
    [41] 黄群, 麻成金, 周姣, 等. 干燥方法及理化因素对鹌鹑蛋白粉功能特性的影响[J]. 食品科学, 2008(10): 299-302. doi: 10.3321/j.issn:1002-6630.2008.10.067
  • 加载中
计量
  • 文章访问数:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 修回日期:  2022-12-23
  • 录用日期:  2023-01-10
  • 网络出版日期:  2023-02-10

目录

    /

    返回文章
    返回