Spatial-temporal changes in western and central Pacific warm pool and their impact on distribution of Katsuwonus pelamis
-
摘要: 中西太平洋热带海域是世界上最大的鲣 (Katsuwonus pelamis) 渔场。为合理开发和利用中西太平洋围网鲣自由鱼群的渔业资源,根据1995—2019年中西太平洋渔业委员会的围网鲣数据计算资源丰度指数,得出渔场重心,并结合海表温度 (Sea surface temperature, SST)、海洋尼诺指数 (Oceanic Niño Index, ONI) 进行皮尔森相关性分析。结果显示,单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 可用于表征自由鱼群渔场重心的资源丰度,且与暖池重心经度以及右边缘经度有显著相关性;渔场重心与暖池指标 (暖池重心经度与右边缘经度) 的相对位置以及变动趋势在不同气候模式下存在差异,而在同一气候模式中相同。结果表明,渔场重心可通过暖池重心的变化进行预测,而通过构建暖池场与自由鱼群资源丰度的时空分布关系发现,暖池右边缘能够与自由鱼群的空间分布产生联系,为商业性捕捞围网鲣自由鱼群提供渔场边界的指示,为其资源开发与养护提供科学依据。Abstract: The western and central Pacific tropical waters are largest fishing ground for the skipjack tuna (Katsuwonus pelamis) in the world. To rationalize the development and utilization of the fishery resources of K. pelamis free-swimming school fishery in the Western and Central Pacific Ocean, we derived the gravity center by calculating the resource abundance index based on the data of for skipjack tuna from 1995 to 2019 from the Western and Central Pacific Fisheries Commission. Besides, we conducted a Pearson correlation analysis by combining sea surface temperature (SST) and Oceanic Niño Index (ONI). The results show that the catch per unit effort (CPUE), which can be used to characterize the resource abundance of the gravity center of free swimming school of skipjack, was significantly correlated with the longitude of the gravity center of the warm pool and the longitude of the right edge. The relative positions and trends of the CPUE and warm pool indicators (Longitude of the gravity center of the warm pool and longitude of the right edge) were different under different climate modes but were the same under the same climate mode. The results show that the changes in the gravity center of the fishing grounds can be predicted by the warm pool's changes in the gravity center. By constructing the spatial-temporal distribution relationship between the warm pool field and the resource abundance, we found that the right edge of the warm pool could be associated with the spatial distribution of the free swimming school of skipjack, which provides an indication of the fishing ground boundary of free-swimming school stock in commercial fishing purse-seine skipjack tuna, and provides a scientific basis for its resource exploitation and conservation.
-
图 3 不同气候模式下CPUE与暖池的时空分布
注:a、b为拉尼娜气候模式;c、d为正常气候模式;e、f为厄尔尼诺气候模式;g、h为厄尔尼诺气候模式向正常气候模式转变。
Figure 3. Spatial-temporal distribution of CPUE and warm pool under different climate modes
Note: (a) and (b) are the La Niña climate modes; (c) and (d) are the normal climate modes; (e) and (f) are the El Niño climate modes; (g) and (h) are the climate modes shifting from the El Niño to the normal.
-
[1] LAN K W, WU Y L, CHEN L C, et al. Effects of climate change in marine ecosystems based on the spatiotemporal age structure of top predators: a case study of bigeye tuna in the Pacific Ocean[J]. Front Mar Sci, 2021, 8(8): 614594. [2] 郭爱, 张扬, 余为, 等. 两类强度厄尔尼诺和拉尼娜事件对中国近海鲐鱼栖息地的影响[J]. 海洋学报, 2018, 40(12): 58-67. [3] LEHODEY P, BERTRAND A, HOBDAY A J, et al. ENSO impact on marine fisheries and ecosystems[M]. Hoboken, New Jersey: American Geophysical Union (AGU): John Wiley & Sons, Inc., 2020: 429. [4] XUE C J, FAN X, DONG Q, et al. Using remote sensing products to identify marine association patterns in factors relating to ENSO in the Pacific Ocean[J]. Isprs Int J Geo-inf, 2017, 6(1): 32. doi: 10.3390/ijgi6010032 [5] COLLETTE B B, NAUEN C E. FAO species catalogue, vol. 2: Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date[R]. FAO Fisheries Synopsis No 125. Rome: FAO, 1983: 2. [6] Food and Agriculture Organization of the United Nations. 2012 FAO yearbook: Fishery and aquaculture statistics[M]. Rome: FAO, 2014: 233-269. [7] WILLIAMS P, TERAWASI P. Overview of tuna fisheries in the western and central Pacific Ocean, including economic conditions-2011[C]//Working Paper GN-WP-1, 8th Regular Session of the Scientific Committee of the Western and Central Pacific Fisheries Commission, Busan, Republic of Korea: WCPFC, 2011: 1-49. [8] 许柳雄, 王学昉, 朱国平, 等. 中西太平洋金枪鱼围网流木鱼群中鲣鱼种群结构分析[J]. 生态学杂志, 2009, 28(2): 293-299. doi: 10.13292/j.1000-4890.2009.0029 [9] MARIANNE R, LAURENT D, NATHALIE B, et al. Comparison of condition factors of skipjack tuna (Katsuwonus pelamis) associated or not with floating objects in an area known to be naturally enriched with logs[J]. Can J Fish Aquat Sci, 2014, 71(3): 472-478. doi: 10.1139/cjfas-2013-0389 [10] BAILEY M, ISHIMURA G, PAISLEY R, et al. Moving beyond catch in allocation approaches for internationally shared fish stocks[J]. Mar Policy, 2013, 40: 124-136. [11] GILMAN E, LUNDIN C. Minimizing bycatch of sensitive species groups in marine capture fisheries: lessons from tuna fisheries[M]. London: Oxford University Press, 2010: 150-164. [12] 谢营梁. 中西太平洋金枪鱼渔业的现状和展望[J]. 现代渔业信息, 2002(9): 18-20. [13] 许柳雄, 王学昉, 朱国平, 等. 中西太平洋金枪鱼围网鲣鱼起水鱼群种群结构分析[J]. 海洋湖沼通报, 2010(2): 22-28. doi: 10.3969/j.issn.1003-6482.2010.02.005 [14] FONTENEAU A, CHASSOT E, BODIN N. Global spatio-temporal patterns in tropical tuna purse seine fisheries on drifting fish aggregating devices (FADs): taking a historical perspective to inform current challenges[J]. Aquat Living Resour, 2013, 26(1): 37-48. doi: 10.1051/alr/2013046 [15] HIDAYAT R, ZAINUDDIN M, SAFRUDDIN S, et al. Skipjack tuna (Katsuwonus pelamis) catch in relation to the thermal and chlorophyll-a fronts during May–July in the Makassar Strait[J]. IOP Conf Ser: Earth Environ Sci, 2019, 253(1): 012045. [16] 李政纬. ENSO现象对中西太平洋鲣围网渔况之影响[D]. 基隆: 台湾海洋大学, 2005: 16 [17] 胡奎伟, 朱国平, 王学昉, 等. 中西太平洋鲣鱼丰度的时空分布及其与表温的关系[J]. 海洋渔业, 2011, 33(4): 417-422. doi: 10.3969/j.issn.1004-2490.2011.04.008 [18] 黄易德. 中西太平洋正鲣资源时空分布特性的研究[D]. 基隆: 台湾海洋大学, 2002: 83. [19] LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575 [20] LOUKOS H, MONFRAY P, BOPP L, et al. Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results[J]. Fish Oceanogr, 2003, 12: 474-482. doi: 10.1046/j.1365-2419.2003.00241.x [21] 周甦芳, 沈建华, 樊伟. ENSO 现象对中西太平洋鲣鱼围网渔场的影响分析[J]. 海洋渔业, 2004, 26(3): 167-172. doi: 10.3969/j.issn.1004-2490.2004.03.002 [22] 郭爱, 陈新军, 范江涛. 中西太平洋鲣鱼时空分布及其与ENSO关系探讨[J]. 水产科学, 2010, 29(10): 591-596. doi: 10.3969/j.issn.1003-1111.2010.10.006 [23] 陈洋洋, 陈新军. 厄尔尼诺/拉尼娜现象对中西太平洋鲣资源丰度的影响[J]. 上海海洋大学学报, 2017, 26(1): 113-120. doi: 10.12024/jsou.20160601795 [24] 李亚楠, 陈新军. 印度洋鲣鱼围网资源渔场时空变化及其与ENSO的关系[J]. 海洋学报, 2017, 39(4): 72-78. [25] BELL J, JOHNSON J, GANACHAUD A, et al. Vulnerability of tropical Pacifc fisheries and aquaculture to climate change: summary for Pacifc island countries and territories[M]. Noumea, New Caledonia: Secretariat of the Pacific Community, 2011: 14. [26] LOUKOS H, MONFRAY P, BOPP L, et al. Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results[J]. Fish Oceanogr, 2003, 12: 474-482. doi: 10.1046/j.1365-2419.2003.00241.x [27] SWAIN D, WADE E. Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): tests of predictions of the ideal free distribution[J]. Can J Fish Aquat Sci, 2003, 60: 897-909 [28] WANG J T, ROBERT B, CHEN X J, et al. The effects of spatiotemporal scale on commercial fishery abundance index suitability[J]. ICES J Mar Sci, 2021, 78(7): 2506-2517. doi: 10.1093/icesjms/fsab126 [29] 魏广恩, 陈新军. 不同环境模态下空间分辨率对北太平洋柔鱼CPUE标准化的影响[J]. 海洋科学, 2021, 45(4): 147-158. doi: 10.11759/hykx20190722003 [30] 官文江, 田思泉, 王学昉, 等. CPUE标准化方法与模型选择的回顾与展望[J]. 中国水产科学, 2014, 21(4): 852-862. [31] 陈新军, 钱卫国, 许柳雄, 等. 北太平洋150°E-165°E海域柔鱼重心渔场的年间变动[J]. 广东海洋大学学报, 2003, 23(3): 26-32. doi: 10.3969/j.issn.1673-9159.2003.03.006 [32] COHEN J. Statistical power analysis for the behavioral sciences[M]. London: Taylor and Francis, 2013: 5-13. [33] 官文江, 陈新军. 利用元胞自动机探讨商业性CPUE与资源量之间的关系[J]. 中国海洋大学学报, 2008, 38(4): 561-566. [34] FENG Z P, YU W, ZHANG Y, et al. Habitat variations of two commercially valuable species along the Chilean waters under different-intensity El Niño events[J]. Front Mar Sci, 2022, 9: 1-13. [35] ALLAIN V, GRIFFITHS S, BELL J, et al. Project 46: monitoring the pelagic ecosystem effects of different levels of fishing effort on the WPO warm pool[C]//Western and Central Pacific Fisheries Commission Scientific Committee, Eleventh Regular Session. Nouméa, New Caledonia: WCPFC, 2015: 1-21. [36] PUTRI A, ZAINUDDIN M. Application of remotely sensed satellite data to identify Skipjack Tuna distributions and abundance in the coastal waters of Bone Gulf[J]. IOP Conf Ser: Earth Environ Sci, 2019, 241(1): 7. [37] BARBARA, A, MUHLING, et al. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats[J]. J Marine Syst, 2015, 148: 1-13. doi: 10.1016/j.jmarsys.2015.01.010 [38] DRUON J, CHASSOT E, EMMANUEL C, et al. Skipjack Tuna availability for purse seine fisheries is driven by suitable feeding habitat dynamics in the Atlantic and Indian Oceans[J]. Front Mar Sci, 2017, 4: 1-17. [39] WILLIAMS P, RUAIA T. Overview of tuna fisheries in the western and central Pacific Ocean, including economic conditions–2019[C]//16th WCPFC Scientific Committee Meeting (SC16). Pohnpei State, Federated States of Micronesia: WCPFC, 2020: 7. [40] DAVID A, JUAN M, HOCHBERG T, et al. Tracking the global footprint of fisheries[J]. Science, 2018, 359(6378): 904-908. doi: 10.1126/science.aao5646 [41] JOHNSON J, ALLAIN V, BELL J, et al. Impacts of climate change on oceanic fisheries relevant to the Pacific islands[R]. Sci Rev, 2018: 177-188. [42] LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49: 439-468. doi: 10.1016/S0079-6611(01)00035-0 -