留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温胁迫对军曹鱼幼鱼鳃组织抗氧化能力、细胞凋亡和组织结构的影响

李豫 黄建盛 陈有铭 温震威 欧光海 黄鉴鹏 蒋鑫涛 谢瑞涛 马骞 陈刚

李豫, 黄建盛, 陈有铭, 温震威, 欧光海, 黄鉴鹏, 蒋鑫涛, 谢瑞涛, 马骞, 陈刚. 低温胁迫对军曹鱼幼鱼鳃组织抗氧化能力、细胞凋亡和组织结构的影响[J]. 南方水产科学. doi: 10.12131/20220227
引用本文: 李豫, 黄建盛, 陈有铭, 温震威, 欧光海, 黄鉴鹏, 蒋鑫涛, 谢瑞涛, 马骞, 陈刚. 低温胁迫对军曹鱼幼鱼鳃组织抗氧化能力、细胞凋亡和组织结构的影响[J]. 南方水产科学. doi: 10.12131/20220227
LI Yu, HUANG Jiansheng, CHEN Youming, WEN Zhenwei, OU Guanghai, HUANG Jianpeng, JIANG Xintao, XIE Ruitao, MA Qian, CHEN Gang. Effect of low temperature stress on antioxidant stress, apoptosis and histological structure of gills in cobia (Rachycentron canadum)[J]. South China Fisheries Science. doi: 10.12131/20220227
Citation: LI Yu, HUANG Jiansheng, CHEN Youming, WEN Zhenwei, OU Guanghai, HUANG Jianpeng, JIANG Xintao, XIE Ruitao, MA Qian, CHEN Gang. Effect of low temperature stress on antioxidant stress, apoptosis and histological structure of gills in cobia (Rachycentron canadum)[J]. South China Fisheries Science. doi: 10.12131/20220227

低温胁迫对军曹鱼幼鱼鳃组织抗氧化能力、细胞凋亡和组织结构的影响

doi: 10.12131/20220227
基金项目: 国家现代农业产业技术体系专项资金资助 (CARS-47);国家重点研发计划项目 (2020YFD0900200);广东省科技计划项目 (2016B020201009)
详细信息
    作者简介:

    李豫:李 豫 (1998—),女,硕士研究生,研究方向为鱼类生物学与遗传育种。E-mail: 1948463705@qq.com

    通讯作者:

    马 骞 (1983—),女,副教授,博士,研究方向为海水鱼类发育学、生理学与遗传育种。 E-mail: maq@gdou.edu.cn

    陈 刚 (1961—),男,教授,研究方向为鱼类种子工程与养殖。 E-mail: cheng@gdou.edu.cn

  • 中图分类号: Q 178; S 965.399

Effect of low temperature stress on antioxidant stress, apoptosis and histological structure of gills in cobia (Rachycentron canadum)

  • 摘要: 军曹鱼 (Rachycentron canadum) 鳃组织对水温变动敏感。为探究低温胁迫对军曹鱼幼鱼鳃组织的影响,揭示该鱼应对低温胁迫的响应机制,实验设置2个低温胁迫组 (18、21 ℃) 和1个对照组 (28 ℃),比较分析鳃组织在胁迫后第0、第4和第7天的氧化应激状态、细胞凋亡和组织结构情况。结果显示,低温胁迫下鳃组织超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT) 和谷胱甘肽过氧化物酶 (GPx) 活性显著低于对照组 (P<0.05),丙二醛 (MDA) 质量浓度显著高于对照组 (P<0.05);低温胁迫组鳃组织凋亡相关基因baxcaspase-9caspase-3p53mdm2表达量在第4和第7天时相较于对照组显著升高 (P<0.05),Bcl-2显著降低 (P<0.05);TUNEL检测显示低温组鳃组织细胞凋亡率升高;组织学分析表明低温胁迫下鳃组织出现不同程度的鳃小片排列紊乱、基部增生、融合,上皮细胞和泌氯细胞空泡化等现象。上述研究结果表明,低温胁迫抑制军曹鱼幼鱼鳃组织抗氧化酶活性,造成氧化损伤,进一步诱导细胞凋亡,破坏鳃组织结构完整性。
  • 图  1  低温胁迫对军曹鱼幼鱼鳃组织超氧化物歧化酶SOD(a)、过氧化物酶CAT(b)、谷胱甘肽过氧化物酶GPx(c)活性及丙二醛MDA(d)质量摩尔浓度的影响

    Figure  1.  Effects of low-temperatures on activities of SOD (a), CAT (b), GPx (c) and MDA content (d) in gill of R. canadum

    图  2  低温胁迫对军曹鱼幼鱼鳃组织凋亡相关基因caspase-3(a)、caspase-9(b)、p53(c)、mdm2(d)、bax(e)和bcl-2(f)表达量的影响

    Figure  2.  Relative expression of caspase-3 (a),caspase-9 (b),p53 (c),mdm2 (d),bax (e) and bcl-2 (f) genes in gill of R. canadum at low temperature

    图  3  低温胁迫下军曹鱼幼鱼鳃组织细胞凋亡情况

    注:a—c. 分别表示为28 ℃(对照组)在第0、第4和第7 天时鳃组织细胞凋亡图;d—e. 分别表示为21 ℃胁迫第0、第4和第7 天时鳃组织细胞凋亡图;g—i.分别表示为18 ℃胁迫第0、第4和第7 天时鳃组织细胞凋亡图;红色箭头表示凋亡,标尺=100 μm。

    Figure  3.  Apoptosis of gill of R. canadum at low temperature

    Note: a−c. Apoptosis of the gill at 28 ℃ on 0, 4th and 7th day (Control group); d−e. Apoptosis of the gill at 21 ℃ on 0, 4th and 7th day; g−i. Apoptosis of the gill at 18 ℃ on 0, 4th and 7th day. The red arrows indicate apoptotic cells; bar=100 μm.

    图  4  低温胁迫对军曹鱼幼鱼鳃组织结构的影响

    注:a—c. 分别表示为28 ℃(对照组)在第0、第4和第7 天鳃组织显微结构图;d—e. 分别表示为21 ℃胁迫第0、第4和第7 天鳃组织显微结构图;g—i. 分别表示为18 ℃胁迫第0、第4和第7 天鳃组织显微结构图;标尺=50 μm。

    Figure  4.  Histopathological features in gill tissue of R. canadum after exposure to low temperature

    Note: a–c. Microscopical gill structure at 28 ℃ on 0, 4th and 7th day (Control group); d–e. Microscopical gill structure at 21 ℃ on 0, 4th and 7th day; g–i. Microscopical gill structure of at 18 ℃ at 0, 4th and 7th day; bar=50 μm.

    表  1  引物序列

    Table  1.   Primer sequence

    引物
    Primer
    引物序列 (5'—3')
    Primer sequence (5'−3')
    基因序列
    Accession No.
    caspase-9-F GTGGAGCTCCTGCTGTTCAT OP546050
    caspase-9-R ACGGGCTGGCATCCATTTTA
    caspase-3-F ACCAGACAGTGGACCAGATAA OP546051
    caspase-3-R GTGGAGAAGGCATAAAGGAAG
    bcl-2-F CCACCACGGCGAAGAGAAGATT OP546048
    bcl-2-R CTGCGGTGTCATCTCCTCCTTG
    p53-F GAGACCTTCAGGAAGTACCAGC OP546053
    p53-R TCTCCGGTTTGTCCTTGTTGG
    bax-F GCAGAGTGGTCGCACTGTTCT OP546049
    bax-R AATGCCCTCCCAGCCTCCTT
    mdm2-F ATCCTCGCAAGAGGTTGGTG OP546052
    mdm2-R TCCACAGAGGAAAGCGTCAC
    b-actin-F AGGGAAATTGTGCGTGAC EU266 539.1
    β-actin-R AGGCAGCTCGTAGCTCTT
    下载: 导出CSV
  • [1] IONA A, THEODOROU A, SOFIANOS S, et al. Mediterranean Sea climatic indices: monitoring long-term variability and climate changes[J]. Earth Syst Sci Data, 2018, 10(4): 1829-1842. doi: 10.5194/essd-10-1829-2018
    [2] LAZOGLOU G, ANAGNOSTOPOULOU C, TOLIKA K, et al. A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region[J]. Theor Appl Climatol, 2019, 136(1): 99-117.
    [3] PHROMPANYA P, PANASE P, SAENPHET S, et al. Histopathology and oxidative stress responses of Nile tilapia Oreochromis niloticus exposed to temperature shocks[J]. Fish Sci, 2021, 87(4): 491-502. doi: 10.1007/s12562-021-01511-y
    [4] XU Z H, REGENSTEIN J M, XIE D, et al. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure[J]. Fish Shellfish Immunol, 2018, 72: 564-571. doi: 10.1016/j.fsi.2017.11.016
    [5] YANG S, YAN T, ZHAO L, et al. Effects of temperature on activities of antioxidant enzymes and Na+/K+-ATPase, and hormone levels in Schizothorax prenanti[J]. J Therm Biol, 2018, 72: 155-160. doi: 10.1016/j.jtherbio.2018.02.005
    [6] BIRBEN E, SAHINER U M, SACKESEN C, et al. Oxidative stress and antioxidant defense[J]. World Allergy Organ J, 2012, 5(1): 9-19. doi: 10.1097/WOX.0b013e3182439613
    [7] CAO L, HUANG W, SHAN X, et al. Tissue-specific accumulation of cadmium and its effects on antioxidative responses in Japanese flounder juveniles[J]. Environ Toxicol Pharmacol, 2012, 33(1): 16-25. doi: 10.1016/j.etap.2011.10.003
    [8] JOY S, ALIKUNJU A P, JOSE J, et al. Oxidative stress and antioxidant defense responses of Etroplus suratensis to acute temperature fluctuations[J]. J Therm Biol, 2017, 70: 20-26. doi: 10.1016/j.jtherbio.2017.10.010
    [9] JIN S R, WANG L, LI X X, et al. Integrating antioxidant responses and oxidative stress of ornamental discus (Symphysodon spp. ) to decreased temperatures: evidence for species-specific thermal resistance[J]. Aquaculture, 2021, 535: 736375. doi: 10.1016/j.aquaculture.2021.736375
    [10] SIES H. Oxidative stress: oxidants and antioxidants[J]. Exp Physiol, 1997, 82(2): 291-295. doi: 10.1113/expphysiol.1997.sp004024
    [11] ZHANG X, NIU Y, ZHANG H, et al. The effect of long-term cold acclimation on redox state and antioxidant defense in the high-altitude frog, Nanorana pleskei[J]. J Therm Biol, 2021, 99: 103008. doi: 10.1016/j.jtherbio.2021.103008
    [12] COIMBRA-COSTA D, ALVA N, DURAN M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain[J]. Redox Biol, 2017, 12: 216-225. doi: 10.1016/j.redox.2017.02.014
    [13] ZHA J, HONG X, RAO H, et al. Benzo (a) pyrene-induced a mitochondria-independent apoptosis of liver in juvenile Chinese rare minnows (Gobiocypris rarus)[J]. Environ Pollut, 2017, 231: 191-199. doi: 10.1016/j.envpol.2017.08.005
    [14] WANG J, WANG Q, LIU N, et al. Hydrogen peroxide leads to cell damage and apoptosis in the gill of the freshwater crab Sinopotamon henanense (Crustacea, Decapoda)[J]. Hydrobiologia, 2014, 741(1): 13-21. doi: 10.1007/s10750-013-1760-x
    [15] 陈付菊, 付生云, 马敏, 等. 低氧胁迫对青海湖裸鲤端脑抗氧化酶活性、细胞凋亡及相关基因表达的影响[J]. 水生生物学报, 2021: 1-12. doi: 10.7541/2021.2019.212
    [16] JIN Y X, LEE J Y, CHOI S H, et al. Heat shock induces apoptosis related gene expression and apoptosis in porcine parthenotes developing in vitro[J]. Anim Reprod Sci, 2007, 100(1/2): 118-127.
    [17] ZHANG H, HUANG H, ZHENG P, et al. The alleviative effect of thyroid hormone on cold stress-induced apoptosis via HSP70 and mitochondrial apoptosis signal pathway in bovine Sertoli cells[J]. Cryobiology, 2022, 105: 63-70. doi: 10.1016/j.cryobiol.2021.11.181
    [18] CHENG C H, YANG F F, LIAO S A, et al. High temperature induces apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells[J]. J Therm Biol, 2015, 53: 172-179. doi: 10.1016/j.jtherbio.2015.08.002
    [19] TASSABEHJI N M, VANLANDINGHAM J W, LEVENSON C W. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 in human Hep G2 cells[J]. Exp Biol Med (Maywood), 2005, 230(10): 699-708. doi: 10.1177/153537020523001002
    [20] ELABD H, WANG H P, SHAHEEN A, et al. Anti-oxidative effects of some dietary supplements on yellow perch (Perca flavescens) exposed to different physical stressors[J]. Aquac Rep, 2017, 8: 21-30. doi: 10.1016/j.aqrep.2017.09.002
    [21] ZHANG M, HU J, ZHU J, et al. Transcriptome, antioxidant enzymes and histological analysis reveal molecular mechanisms responsive to long-term cold stress in silver pomfret (Pampus argenteus)[J]. Fish Shellfish Immunol, 2022, 121: 351-361. doi: 10.1016/j.fsi.2022.01.017
    [22] SABER H T. Histological adaptation to thermal changes in gills of common carp fishes Cyprinus carpio L[J]. Rafidain J Sci, 2011, 22(1): 46-55. doi: 10.33899/rjs.2011.32464
    [23] WANG Z, DONG Z, YANG Y, et al. Histology, physiology, and glucose and lipid metabolism of Lateolabrax maculatus under low temperature stress[J]. J Therm Biol, 2022, 104: 103161. doi: 10.1016/j.jtherbio.2021.103161
    [24] NIE M, HU J, LU Y, et al. Cold effect analysis and screening of SNPs associated with cold-tolerance in the olive flounder Paralichthys olivaceus[J]. J Appl Ichthyol, 2019, 35(4): 924-932.
    [25] 王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12-18. doi: 10.3969/j.issn.1673-9159.2020.05.002
    [26] BENETTI D D, SUAREZ J, CAMPERIO J, et al. A review on cobia, Rachycentron canadum, aquaculture[J]. J World Aquac Soc, 2021, 52(3): 691-709. doi: 10.1111/jwas.12810
    [27] 石琼, 张勇, 范明君. 中国经济鱼类志[M]. 武汉: 华中科技大学出版社, 2015: 277-278.
    [28] 李豫, 黄建盛, 陈有铭, 等. 低温胁迫对军曹鱼幼鱼血清生化指标、肝脏抗氧化酶活性及凋亡相关基因表达量的影响[J]. 广东海洋大学学报, 2022, 42(5): 1-9. doi: 10.3969/j.issn.1673-9159.2022.05.001
    [29] 蔡润佳, 张静, 黄建盛, 等. 低温胁迫对军曹鱼幼鱼脂代谢相关生理生化的影响[J]. 广东海洋大学学报, 2021, 41(3): 123-130. doi: 10.3969/j.issn.1673-9159.2021.03.016
    [30] ABOKA E R, JIAN Z, SHENGMING S, et al. Histopathological changes in gills, liver, and kidney tissues of bighead carp (Aristichthys nobilis) due to the effects of acute high-temperature stress[J]. Isr J Aquac, 2017, 69(1). DOI: 10.46989/001c.21062.
    [31] MATEY V, RICHARDS J G, WANG Y, et al. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii[J]. J Exp Biol, 2008, 211(7): 1063-1074. doi: 10.1242/jeb.010181
    [32] HWANG P P, LEE T H, LIN L Y. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 301(1): R28-R47. doi: 10.1152/ajpregu.00047.2011
    [33] ISLAM M A, UDDIN M H, UDDIN M J, et al. Temperature changes influenced the growth performance and physiological functions of Thai pangas Pangasianodon hypophthalmus[J]. Aquac Rep, 2019, 13: 100179. doi: 10.1016/j.aqrep.2019.100179
    [34] WEN B, JIN S R, CHEN Z Z, et al. Physiological responses to cold stress in the gills of discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics[J]. Sci Total Environ, 2018, 640: 1372-1381.
    [35] WANG J, REN R, YAO C L. Oxidative stress responses of Mytilus galloprovincialis to acute cold and heat during air exposure[J]. J Molluscan Stud, 2018, 84(3): 285-292. doi: 10.1093/mollus/eyy027
    [36] MENG X, LIU P, LI J, et al. Physiological responses of swimming crab Portunus trituberculatus under cold acclimation: antioxidant defense and heat shock proteins[J]. Aquaculture, 2014, 434: 11-17. doi: 10.1016/j.aquaculture.2014.07.021
    [37] 龙勇, 葛国栋, 李西西, 等. 鱼类低温应激反应的调控机制[J]. 水生生物学报, 2021, 45(6): 1405-1414.
    [38] ROSSI A, BACCHETTA C, CAZENAVE J. Effect of thermal stress on metabolic and oxidative stress biomarkers of Hoplosternum littorale (Teleostei, Callichthyidae)[J]. Ecol Indic, 2017, 79: 361-370. doi: 10.1016/j.ecolind.2017.04.042
    [39] LUSHCHAK V I. Environmentally induced oxidative stress in aquatic animals[J]. Aquat Toxicol, 2011, 101(1): 13-30. doi: 10.1016/j.aquatox.2010.10.006
    [40] LACY B, RAHMAN M S, RAHMAN M S. Potential mechanisms of Na+/K+-ATPase attenuation by heat and pesticides co-exposure in goldfish: role of cellular apoptosis, oxidative/nitrative stress, and antioxidants in gills[J]. Environ Sci Pollut Res, 2022, 29: 57376-57394. doi: 10.1007/s11356-022-19779-7
    [41] WEN P, WEI X, LIANG G, et al. Long-term exposure to low level of fluoride induces apoptosis via p53 pathway in lymphocytes of aluminum smelter workers[J]. Environ Sci Pollut Res, 2019, 26(3): 2671-2680. doi: 10.1007/s11356-018-3726-z
    [42] MARTÍNEZ-MORENTIN L, MARTÍNEZ L, PILOTO S, et al. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model[J]. Hum Mol Genet, 2015, 24(13): 3608-3622. doi: 10.1093/hmg/ddv106
    [43] LIN T, MAK N K, YANG M S. MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: involvement of p53 phosphorylation and acetylation[J]. Toxicology, 2008, 247(2): 145-153.
    [44] 刘林, 赵群芬, 金凯星, 等. 纳米氧化锌对斑马鱼肝脏的毒性效应[J]. 环境科学, 2015, 36(10): 3884-3891. doi: 10.13227/j.hjkx.2015.10.044
    [45] 陈小雁, 熊真真, 尤姗姗, 等. FLASH 结合 p53 并增强其转录活性[J]. 中国生物化学与分子生物学报, 2021: 1-20.
    [46] 刘明丽, 杨文意, 王金凤, 等. 低温胁迫下鱼类鳃中RPL11/MDM2/P53信号通路相关基因及蛋白表达差异分析[J]. 大连海洋大学学报, 2021, 36(1): 51-56. doi: 10.16535/j.cnki.dlhyxb.2020-008
    [47] ZHANG Y, LI Q, SHU Y, et al. Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway[J]. J Funct Foods, 2015, 15: 151-159. doi: 10.1016/j.jff.2015.03.025
    [48] JIAO W Y, HAN Q, XU Y, et al. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: through oxidative stress and apoptosis[J]. Fish Shellfish Immunol, 2019, 86: 239-245. doi: 10.1016/j.fsi.2018.08.060
    [49] TANG J, ZHANG Z, MIAO J, et al. Effects of benzo [a] pyrene exposure on oxidative stress and apoptosis of gill cells of Chlamys farreri in vitro[J]. Environ Toxicol Pharmacol, 2022, 93: 103867. doi: 10.1016/j.etap.2022.103867
    [50] CHENG C H, YE C X, GUO Z X, et al. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress[J]. Fish Shellfish Immunol, 2017, 64: 137-145. doi: 10.1016/j.fsi.2017.03.003
    [51] 胡玲红, 王映, 王化敏, 等. 不同温度胁迫对青鳉鳃凋亡的影响[J]. 大连海洋大学学报, 2021: 1-10. doi: 10.16535/j.cnki.dlhyxb.2021-053
    [52] LIU Y, MA D, XIAO Z, et al. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature[J]. Chin J Oceanol Limnol, 2015, 33(1): 11-19. doi: 10.1007/s00343-015-4028-7
    [53] MOHAMAD S, LIEW H J, ZAINUDDIN R A, et al. High environmental temperature and low pH stress alter the gill phenotypic plasticity of Hoven’s carp Leptobarbus hoevenii[J]. J Fish Biol, 2021, 99(1): 206-218. doi: 10.1111/jfb.14712
    [54] ZHENG X, FENG L, JIANG W D, et al. The regulatory effects of pyridoxine deficiency on the grass carp (Ctenopharyngodon idella) gill barriers immunity, apoptosis, antioxidant, and tight junction challenged with Flavobacterium columnar[J]. Fish Shellfish Immunol, 2020, 105: 209-223. doi: 10.1016/j.fsi.2020.07.036
    [55] 罗胜玉. 低温胁迫对黄姑鱼生理生化指标和Hsp70基因表达模式的影响[D]. 舟山: 浙江海洋大学, 2016: 7-11.
    [56] DASH G, YONZONE P, CHANDA M, et al. Histopathological changes in Labeo rohita (Hamilton) fingerlings to various acclimation temperatures[J]. Chronicles Young Scientists, 2011, 2(1): 29-29. doi: 10.4103/2229-5186.79347
    [57] 区又君, 刘奇奇, 温久福, 等. 急性低温胁迫对四指马鲅幼鱼肝脏、肌肉以及鳃组织结构的影响[J]. 生态科学, 2018, 37(5): 53-59. doi: 10.14108/j.cnki.1008-8873.2018.05.008
    [58] GIBBONS T C, MCBRYAN T L, SCHULTE P M. Interactive effects of salinity and temperature acclimation on gill morphology and gene expression in threespine stickleback[J]. Comp Biochem Physiol A Mol Integr Physiol, 2018, 221: 55-62. doi: 10.1016/j.cbpa.2018.03.013
    [59] 王萌, 潘阳阳, 岳亚辉, 等. 5种非甾体类抗炎药对小鼠的肝损伤作用[J]. 西北农林科技大学学报(自然科学版), 2021, 49(8): 9-16. doi: 10.13207/j.cnki.jnwafu.2021.08.002
    [60] HUANG C, FENG L, LIU X A, et al. The toxic effects and potential mechanisms of deoxynivalenol on the structural integrity of fish gill: oxidative damage, apoptosis and tight junctions disruption[J]. Toxicon, 2020, 174: 32-42. doi: 10.1016/j.toxicon.2019.12.151
    [61] ZHANG W, XIA S, ZHU J, et al. Growth performance, physiological response and histology changes of juvenile blunt snout bream, Megalobrama amblycephala exposed to chronic ammonia[J]. Aquaculture, 2019, 506: 424-436. doi: 10.1016/j.aquaculture.2019.03.072
    [62] DUTRA F M, RÖNNAU M, SPONCHIADO D, et al. Histological alterations in gills of Macrobrachium amazonicum juveniles exposed to ammonia and nitrite[J]. Aquat Toxicol, 2017, 187: 115-123. doi: 10.1016/j.aquatox.2017.04.003
    [63] 卢其西, 林勇, 宾石玉, 等. 罗非鱼6个家系的低温耐寒测定分析[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 104-109. doi: 10.16088/j.issn.1001-6600.2011.02.016
    [64] 胡玉珍. 低温选择大黄鱼子代SSR分析及越冬季节生理生化指标变化[D]. 宁波: 宁波大学, 2011: 9-18.
    [65] 唐扬, 孟小菲, 沈瑞福, 等. 凡纳滨对虾家系选育的研究与应用[J]. 水产科学, 2018, 37(4): 555-563. doi: 10.16378/j.cnki.1003-1111.2018.04.020
    [66] ANGILLETTA M J, NIEWIAROWSKI P H, NAVAS C A. The evolution of thermal physiology in ectotherms[J]. J Therm Biol, 2002, 27(4): 249-268. doi: 10.1016/S0306-4565(01)00094-8
  • 加载中
计量
  • 文章访问数:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 修回日期:  2022-10-15
  • 录用日期:  2022-12-04
  • 网络出版日期:  2022-12-19

目录

    /

    返回文章
    返回