留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凡纳滨对虾小型温棚养殖模式水体微生物群落的研究

方圆 黎慧 王李宝 万夕和 史文军 杨泽禹 姜琦 沈辉 胡润豪 管小平 杨家新

方圆, 黎慧, 王李宝, 万夕和, 史文军, 杨泽禹, 姜琦, 沈辉, 胡润豪, 管小平, 杨家新. 凡纳滨对虾小型温棚养殖模式水体微生物群落的研究[J]. 南方水产科学. doi: 10.12131/20220205
引用本文: 方圆, 黎慧, 王李宝, 万夕和, 史文军, 杨泽禹, 姜琦, 沈辉, 胡润豪, 管小平, 杨家新. 凡纳滨对虾小型温棚养殖模式水体微生物群落的研究[J]. 南方水产科学. doi: 10.12131/20220205
FANG Yuan, LI Hui, WANG Libao, WAN Xihe, SHI Wenjun, YANG Zeyu, JIANG Qi, SHEN Hui, HU Runhao, GUAN Xiaoping, YANG Jiaxin. Study on bacterial community structure in rearing water in small greenhouse of Litopenaeus vannamei[J]. South China Fisheries Science. doi: 10.12131/20220205
Citation: FANG Yuan, LI Hui, WANG Libao, WAN Xihe, SHI Wenjun, YANG Zeyu, JIANG Qi, SHEN Hui, HU Runhao, GUAN Xiaoping, YANG Jiaxin. Study on bacterial community structure in rearing water in small greenhouse of Litopenaeus vannamei[J]. South China Fisheries Science. doi: 10.12131/20220205

凡纳滨对虾小型温棚养殖模式水体微生物群落的研究

doi: 10.12131/20220205
基金项目: 江苏现代农业 (特色水产) 产业技术体系 (JATS〔2022〕419);2021年度省政策引导类计划 (苏北科技专项-富民强县) (SZ-YC202114);江苏省农业科技自主创新资金项目 (CX(21)3160);新疆维吾尔自治区乡村振兴产业发展科技行动项目 (2022NC019);2022年江苏沿海开发集团有限公司科研项目 (2022YHNFZZ01)
详细信息
    通讯作者:

    黎 慧 (1985—),女,副研究员,硕士,研究方向为水产健康养殖及病害防控。E-mail: xh0922@163.com

    万夕和 (1971—),男,研究员,博士,研究方向为水产健康养殖及病害防控。E-mail: wxh1708@163.com

  • 中图分类号: S 917.1

Study on bacterial community structure in rearing water in small greenhouse of Litopenaeus vannamei

  • 摘要: 小型温棚养殖模式 (下称小棚模式) 是近年来凡纳滨对虾 (Litopenaeus vannamei) 养殖的热点模式。为阐明小棚模式养殖水体微生物群落的特点,探究该模式高产、高效的原因,基于16S rRNA基因的测序结果,对第2、第44、第69和第96天小棚模式养殖水体的微生物群落组成和功能进行分析。结果表明:凡纳滨对虾小棚养殖后期水体微生物群落的丰富度和多样性显著高于前期;在整个养殖过程中,门水平主要优势菌为变形菌门、拟杆菌门和放线菌门,其中变形菌门丰度在第69天显著增加,放线菌门丰度前期较高,后期减少;属水平优势菌属中Candidatus_Aquiluna的丰度在第2天最高 (28.7%);海命菌属 (Marivita) 在中期富集,在第69天丰度最高 (9.94%);黄杆菌属 (Flavobacterium) 的丰度随着养殖时间逐渐增加,在第96天达到最高 (11.63%)。通过PICRUS t2预测微生物群落的功能,丰度前20的代谢功能项在第69和第96天的丰度显著高于第2天,尤其萜类和聚酮类代谢、脂类代谢、异种生物降解和代谢等功能均高度富集,通过FAPROTAX鉴定得出,化能异养类菌的丰度在养殖后期显著增加。环境因子关联分析发现,总氮 (TN) 和化学需氧量 (COD) 对小棚模式水体微生物群落结构的影响最大,海命菌属、Candidatus_AquilunaRhodopirellula等微生物发挥了固碳、降氮、降磷的作用。综上所述,在高密度、高氮磷的环境条件下,小棚模式的水体微生物在保持水环境稳定和增强对虾免疫与抗病能力方面发挥了重要作用。
  • 图  1  小棚采样图

    Figure  1.  Sampling chart of small greenhouse

    图  2  小棚模式水体水质变化情况

    Figure  2.  Change of water quality in small greenhouse

    图  3  小棚模式水体微生物群落upset维恩图

    注:GC1、GC2、GC3 and GC4分别代表养殖第2、第44、第69、第96天的样品,下同。

    Figure  3.  Upset venn diagram of microbial community in water of small greenhouse

    Note: GC1, GC2, GC3 and GC4 represent the samples collected on 2nd, 44th, 69th and 96th day, respectively. The same below.

    图  4  小棚模式水体中微生物群落主要微生物物种组成

    Figure  4.  Relative abundances of major microbial community in water of small greenhouse

    图  5  小棚模式水体中微生物群落结构NMDS

    Figure  5.  UPGMA clustering of microbial community in water of small greenhouse

    图  6  小棚模式水体中微生物分类鉴定

    注:仅显示养殖水体微生物中线性判别分析 (LDA) 值高于4.0的类群;(a) 柱的长度代表细菌谱系的影响大小;(b) 从门到属的细菌群由中心向外排列;每个圆的直径与细菌分类群的丰度成正比;不同颜色节点表示在对应组别中显著富集,且对组间差异存在显著影响的微生物类群。

    Figure  6.  Classification and identification of microbial community in water of small greenhouse

    Note: Only the taxa whose linear discriminate analysis (LDA) value above 4.0 for rearing water are shown; (a) The length of column represents the effect size of bacterial lineages; (b) The bacterial groups from phylum to genus level are listed from center to outside. Each circle's diameter is proportional to the bacterial taxon's abundance. The nodes in different colors represent the microbial groups which are significantly enriched in the corresponding groups and have a substantial impact on between-group variance.

    图  7  小棚模式水体中微生物群落KEGG功能预测

    注:(a) 同一行中颜色深浅表示该微生物在不同样品中的功能丰度差异。

    Figure  7.  KEGG function analysis of microbial community in water of small greenhouse

    Note: (a) The difference in the shade of color within the same row indicates the difference in the functional abundance of the microorganism in different samples.

    图  8  小棚模式水体中各环境因子的环境贡献度和Pearson分析

    注:(a) 环境贡献度分析;(b) xy轴分别为环境因子和物种,通过计算获得相关性RPR在图中以不同颜色展示,右侧图例是不同R的颜色区间;P则用*标出,*. 0.01<P≤0.05,**. 0.001<P≤0.01,***. P≤0.001。

    Figure  8.  Environmental contribution and Pearson analysis of environmental factors in water of small greenhouse

    Note: (a) Environmental contribution analysis; (b) The x-axis and y-axis are environmental factors and species, respectively. The correlation R and P are obtained by calculation. R values are shown in different colors, and the legend on the right is the color range of different R values. P values are marked with *. *. 0.01<P≤0.05; **. 0.001<P≤0.01; ***. P≤0.001.

    表  1  小棚模式水体微生物群落Alpha多样性指数表

    Table  1.   α-diversity indices of microbial community in water of small greenhouse

    组别
    Group
    香农指数
    Shannon
    辛普森指数
    Simpson
    丰富度指数
    Chao
    GC15.989±1.071b0.886±0.047b1 685.667±377.500ab
    GC26.552±0.204b0.911±0.027ab1 368.000±158.547b
    GC39.005±0.105a0.990±0.001a2 728.333±194.898a
    GC47.667±1.801ab0.942±0.072ab2 065.333±970.462ab
    注:同一列数据上标不同字母表示组间差异显著 (P<0.05)。
    Note: Different letters within the same column indicate significant difference (P<0.05).
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 22-24.
    [2] LU H J, CHEN W, LIU F K, et al. A genetic linkage map of the Pacific white shrimp (Litopenaeus vannamei): QTL mapping for low-temperature tolerance and growth-related traits and identification of the candidate genes[J]. Aquaculture, 2023, 562: 738834. doi: 10.1016/j.aquaculture.2022.738834
    [3] 朱林, 车轩, 刘兴国, 等. 对虾工厂化养殖研究进展[J]. 山西农业科学, 2019, 47(7): 1288-1290, 1294. doi: 10.3969/j.issn.1002-2481.2019.07.42
    [4] 徐树晨, 印方成. 华东地区温棚养殖南美白对虾情况调研分析[J]. 科学养鱼, 2021(3): 20-23. doi: 10.3969/j.issn.1004-843X.2021.03.012
    [5] 李越蜀, 郑忠明, 翟海佳, 等. 不同模式凡纳滨对虾(Litopenaeus vannamei)养殖池塘沉积物酶活性及其微生物群落结构分析[J]. 海洋与湖沼, 2012, 43(6): 1254-1260. doi: 10.11693/hyhz201206032032
    [6] 罗国栋, 鞠蓉, 陆俊杰, 等. 南美白对虾如东小棚养殖模式的应用及探索[J]. 水产研究, 2021, 8(3): 95-102.
    [7] ZHAO Q, XIE F X, ZHANG F F, et al. Analysis of bacterial community functional diversity in late-stage shrimp (Litopenaeus vannamei) ponds using Biolog EcoPlates and PICRUST2[J]. Aquaculture, 2022, 546: 737288. doi: 10.1016/j.aquaculture.2021.737288
    [8] SONG C, ZHONG L, LIU Y, et al. Spatial and temporal succession of bacterial communities in three artificial fishponds[J]. Aquac Res, 2019, 50(10): 2793-2801. doi: 10.1111/are.14231
    [9] ZHANG K, ZHENG X, HE Z, et al. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments[J]. Microb biotechnol, 2020, 13(5): 1597-1610. doi: 10.1111/1751-7915.13622
    [10] HU DONG, WANG L P, ZHAO R, et al. Core microbiome involved in nitrite removal in shrimp culture ponds[J]. Aquac Res, 2021, 53(5): 1663-1675.
    [11] ZHANG H, SUN Z L, LIU B, et al. Dynamic changes of microbial communities in Litopenaeus vannamei cultures and the effects of environmental factors[J]. Aquaculture, 2016, 455: 97-108. doi: 10.1016/j.aquaculture.2016.01.011
    [12] RODRIGO G, FERNANDA C, ALONSO A, et al. Doing more with less: a comparison of 16S hypervariable regions in search of defining the shrimp microbiota[J]. Microorganisms, 2020, 8(1): 134. doi: 10.3390/microorganisms8010134
    [13] HOU D, HUANG Z, ZENG S, et al. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment[J]. J Appl Microbiol, 2018, 125(3): 792-799. doi: 10.1111/jam.13919
    [14] HUANG F, PAN L Q, SONG M, et al. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health[J]. Appl Microbiol Biotechnol, 2018, 102(19): 8585-8598. doi: 10.1007/s00253-018-9229-5
    [15] LOUCA S, POLZ M F, MAZEL F, et al. Function and functional redundancy in microbial systems[J]. Nat Ecol Evol, 2018, 2(6): 936-943. doi: 10.1038/s41559-018-0519-1
    [16] 邓波. 如东温棚对虾养殖模式与技术的优化[D]. 青岛: 中国海洋大学, 2015: 3.
    [17] 李景, 陈昌福. 温棚高产养虾池中浮游植物群落与水化学因子特征[J]. 中国水产, 2015(7): 72-76. doi: 10.3969/j.issn.1002-6681.2015.07.034
    [18] 刘军, 戴习林, 臧维玲. 凡纳滨对虾温棚高位池养殖密度及简易水质调控措施效果研究[J]. 上海海洋大学学报, 2016, 25(2): 189-197.
    [19] 李春岭, 肖国娟, 孙绍永, 等. 利用冬季闲置小棚养殖海参试验[J]. 河北渔业, 2022(6): 15-16. doi: 10.3969/j.issn.1004-6755.2022.06.004
    [20] 王仲淼. 罗氏沼虾小棚标粗池塘养殖模式与技术分析[J]. 科学养鱼, 2021(12): 31-32. doi: 10.3969/j.issn.1004-843X.2021.12.017
    [21] RAUL H P. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation[J]. Aquaculture, 2003, 226(1): 35-44.
    [22] STUART E J, LENNON J T. Dormancy contributes to the maintenance of microbial diversity[J]. Proc Natl Acad Sci USA, 2010, 107: 5881-5886.
    [23] HE Z, PAN L, ZHANG M, et al. Metagenomic comparison of structure and function of microbial community between water, effluent and shrimp intestine of higher place Litopenaeus vannamei ponds[J]. J Appl Microbiol, 2020, 129(2): 243-255. doi: 10.1111/jam.14610
    [24] 宫晗, 陈萍, 秦桢, 等. 凡纳滨对虾工厂化循环水养殖系统水质指标及微生物菌群结构的分析[J]. 渔业科学进展, 2023, 44(1): 125-136.
    [25] COTTRELL M T, KIRCHMAN D L. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter[J]. Appl Environ Microb, 2000, 66: 1692-1697. doi: 10.1128/AEM.66.4.1692-1697.2000
    [26] SHU D T,  HE Y L,  YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technol, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072
    [27] BUENO D M C P, ZHOU J L,  THEROUX S,  et al. Methylphosphonate degradation and salt-tolerance genes of two novel halophilic marivita metagenome-assembled genomes from unrestored solar salterns[J]. Genes, 2022, 13(1): 148-148. doi: 10.3390/genes13010148
    [28] 韩天骄, 徐武杰, 徐煜, 等. 停加红糖对凡纳滨对虾生物絮团养殖系统水质和氮收支的影响[J]. 南方水产科学, 2020, 16(6): 81-88. doi: 10.12131/20200052
    [29] EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1/2/3/4): 346-358.
    [30] STALOCH B E, NIERO H,  FREITAS R C D, et al. Draft genome sequence of Psychrobacter nivimaris LAMA 639 and its biotechnological potential[J]. Data brief, 2022, 41: 107927-107927. doi: 10.1016/j.dib.2022.107927
    [31] WANG A R,  RAN C,  WANG Y B, et al. Use of probiotics in aquaculture of China: a review of the past decade[J]. Fish Shellfish Immunol, 2019, 86: 734-755. doi: 10.1016/j.fsi.2018.12.026
    [32] LAI X F, CHEN J, LIANG S Y, et al. Effects of the probiotic Psychrobacter sp. B6 on the growth, digestive enzymes, antioxidant capacity, immunity, and resistance of Exopalaemon carinicauda to Aeromonas hydrophila[J]. Probiotics Antimicro, 2022: 1-8.
    [33] WILLIAMS T J, WILKINS D, LONG E, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics[J]. Environ Microbiol, 2013, 15: 1302-1317. doi: 10.1111/1462-2920.12017
    [34] ZHENG Y F, YU M,  LIU J W,  et al. Bacterial community associated with healthy and diseased pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages[J]. Front Microbiol, 2017, 8: 1362. doi: 10.3389/fmicb.2017.01362
    [35] 王春忠, 林国荣, 严涛, 等. 长毛对虾海水养殖环境以及虾肠道微生物群落结构研究[J]. 水产学报, 2014, 38(5): 706-712.
    [36] RAIRAT T, CHUCHIRD N, KEETANON A, et al. Effects of dietary yeast-derived nucleotide and RNA on growth performance, survival, immune responses, and resistance to Vibrio parahaemolyticus infection in Pacific white shrimp (Litopenaeus vannamei)[J]. Aquac Rep, 2022, 27: 101352. doi: 10.1016/j.aqrep.2022.101352
    [37] SUN F L, WANG C Z, YANG H Q. Physicochemical factors drive bacterial communities in an aquaculture environment[J]. Front Environ Sci, 2021, 9: 709541. doi: 10.3389/fenvs.2021.709541
    [38] XUE Y M,  LI L,  DONG S L,  et al. The effects of different carbon sources on the production environment and breeding parameters of Litopenaeus vannamei[J]. Water, 2021, 13(24): 3584-3584. doi: 10.3390/w13243584
    [39] 何树青, 李日美, 杨奇慧, 等. 锌对凡纳滨对虾生长、非特异性免疫指标、抗病力及肠道菌群结构的影响[J]. 水产学报, 2021, 45(10): 1726-1739.
    [40] RAY A J, LOTZ J M. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources[J]. Aquac Eng, 2014, 63: 54-61. doi: 10.1016/j.aquaeng.2014.10.001
    [41] ZHENG Y F, YU M, LIU Y, et al. Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages[J]. Aquaculture, 2016, 451: 163-169. doi: 10.1016/j.aquaculture.2015.09.020
    [42] BOUWMAN L, GOLDEWIJK K K, HOEK K W V D, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900−2050 period[J]. Proc Natl Acad Sci, 2013, 110(52): 20882-20887. doi: 10.1073/pnas.1012878108
    [43] 张家松, 段亚飞, 张真真, 等. 对虾肠道微生物菌群的研究进展[J]. 南方水产科学, 2015, 11(6): 114-119. doi: 10.3969/j.issn.2095-0780.2015.06.016
    [44] XIONG J B, ZHU J L, WANG K, et al. The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation[J]. Microb Ecol, 2014, 67(2): 256-264. doi: 10.1007/s00248-013-0336-7
    [45] ZHANG D M, WANG X, XIONG J B, et al. Bacterioplankton assemblages as biological indicators of shrimp health status[J]. Ecol Indicators, 2014, 38: 218-224. doi: 10.1016/j.ecolind.2013.11.002
    [46] SUN F L, WANG Y S, WANG, C Z, et al. Insights intothe intestinal microbiota of several aquatic organisms and association with the surrounding environment[J]. Aquaculture, 2019, 507: 196-202. doi: 10.1016/j.aquaculture.2019.04.026
    [47] LIN G R, SUN F L, WANG C Z, et al. Assessment of the effect of enteromorpha prolifera on bacterial community structures in aquaculture environment[J]. PLoS One, 2017, 12(7): e0179792. doi: 10.1371/journal.pone.0179792
    [48] KANG I, LEE K, YANG S J, et al. Genome sequence of "Candidatus Aquiluna"sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an arctic fjord[J]. J Bacteriol, 2012, 194(13): 3550-1. doi: 10.1128/JB.00586-12
    [49] JULIANA E D A, RODRIGO G T, VICTOR S P, et al. Genomic analysis reveals the potential for hydrocarbon degradation of Rhodopirellula sp. MGV isolated from a polluted Brazilian mangrove[J]. Braz J Microbiol, 2021, 52(3): 1-8.
    [50] LIN Y C, CHEN J C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 2003, 224: 193-201.
    [51] YANG S P, LUO J L, HUANG Y X, et al. Effect of sub-lethal ammonia and nitrite stress on autophagy and apoptosis in hepatopancreas of Pacific whiteleg shrimp Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2022, 130: 72-78. doi: 10.1016/j.fsi.2022.08.069
    [52] HUANG M X, XIE J, YU Q R, et al. Toxic effect of chronic nitrite exposure on growth and health in Pacific white shrimp Litopenaeus vannamei[J]. Aquaculture, 2020, 529: 735664. doi: 10.1016/j.aquaculture.2020.735664
    [53] BARBIERI E, BONDIOLI A C V, MELO C B, et al. Nitrite toxicity to Litopenaeus schmitti (Burkenroad, 1936, Crustacea) at different salinity levels[J]. Aquac Res, 2016, 47(4): 1260-1268. doi: 10.1111/are.12583
    [54] COCKBURN A, BRAMBILLA G, FERNÁNDEZ M L, et al. Nitrite in feed: from animal health to human health[J]. Toxicol Appl Pharm, 2013, 270(3): 209-217. doi: 10.1016/j.taap.2010.11.008
    [55] XIAO J, LUO S S, DU J H, et al. Transcriptomic analysis of gills in nitrite-tolerant and -sensitive families of Litopenaeus vannamei[J]. Comp Biochem Phys C, 2021, 253: 109212-109212.
    [56] HU DONG, WANG L P, ZHAO R, et al. Core microbiome involved in nitrite removal in shrimp culture ponds[J]. Aquac Res, 2021, 53(5): 1663-1675.
    [57] 吴伟伦. 不同规格凡纳滨对虾对氨氮和亚硝酸盐耐受能力测试及分析[D]. 南京: 南京农业大学, 2020: 19.
    [58] FAN Y, WANG X L, WANG Y H, et al. Effect of dietary Bacillus licheniformis on growth, intestinal health, and resistance to nitrite stress in Pacific white shrimp Litopenaeus vannamei[J]. Aquac Int, 2021, 29(6): 2555-2573. doi: 10.1007/s10499-021-00764-9
  • 20220205_附录A.pdf
    20220205_附录F.pdf
    20220205_附录CDE.pdf
    20220205_附录B.pdf
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  23
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2022-12-14
  • 录用日期:  2023-01-31
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回