留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酶解褐藻寡糖对鲢肌原纤维蛋白在模拟口腔消化中的影响

丛海花 周倩 吴酉芝 逯晓燕 杨天

丛海花, 周倩, 吴酉芝, 逯晓燕, 杨天. 酶解褐藻寡糖对鲢肌原纤维蛋白在模拟口腔消化中的影响[J]. 南方水产科学. doi: 10.12131/20220204
引用本文: 丛海花, 周倩, 吴酉芝, 逯晓燕, 杨天. 酶解褐藻寡糖对鲢肌原纤维蛋白在模拟口腔消化中的影响[J]. 南方水产科学. doi: 10.12131/20220204
CONG Haihua, ZHOU Qian, WU Youzhi, LU Xiaoyan, YANG Tian. Effect of enzymolysis alginate oligosaccharide on myofibrillar protein in simulated oral digestion[J]. South China Fisheries Science. doi: 10.12131/20220204
Citation: CONG Haihua, ZHOU Qian, WU Youzhi, LU Xiaoyan, YANG Tian. Effect of enzymolysis alginate oligosaccharide on myofibrillar protein in simulated oral digestion[J]. South China Fisheries Science. doi: 10.12131/20220204

酶解褐藻寡糖对鲢肌原纤维蛋白在模拟口腔消化中的影响

doi: 10.12131/20220204
基金项目: 国家自然科学基金青年科学基金项目 (31701630);辽宁省教育厅2021年度高等学校基本科研项目 (LJKZ0715);上海市高等教育人才揽蓄计划科研项目;大连市高层次人才创新支持计划 (2018RQ67);农业部水产品加工重点实验室开放基金 (NYJG201502)
详细信息
    作者简介:

    丛海花 (1983—),女,副教授,博士,研究方向为水产品加工。E-mail: conghh@shzq.edu.cn

  • 中图分类号: TS 254.4

Effect of enzymolysis alginate oligosaccharide on myofibrillar protein in simulated oral digestion

  • 摘要: 将鲢 (Hypophthalmichthys molitrix) 加工成肉糜制品能增加消费者的接受度从而提高其经济价值,酶解褐藻寡糖 (Enzymolysis alginate oligosaccharide, EAO) 能与鲢肌原纤维蛋白 (Myofibrillar protein, MP) 快速反应,提高食品的功能特性。食物经口腔加工后会发生明显的物理、化学变化。为了解肌原纤维蛋白在鲢消化过程中的结构变化,明确口腔消化对褐藻寡糖修饰后的肌原纤维蛋白的影响,从新鲜鲢中提取了肌原纤维蛋白,并向其中添加0.45 mg·mL−1的酶解褐藻寡糖获得寡糖-蛋白复合物 (EAO-MP),考察了鲢肌原纤维蛋白 (M组) 与寡糖-蛋白复合物 (A组) 在模拟口腔消化中的傅里叶红外光谱、内源性荧光光谱、紫外吸收光谱、巯基含量、氢键含量、表面疏水性的变化差异。结果显示:经过模拟口腔消化后,M组无规卷曲结构、总巯基含量增加,表面疏水性显著降低 (P<0.05),说明肌原纤维蛋白由于模拟口腔消化液的作用,二级、三级结构发生了改变;添加酶解褐藻寡糖后的A组无规卷曲结构下降了2.97%,A组在3个不同消化时间点 (0、5、15 s) α-螺旋结构相比M组分别增加了7.29%、2.73%、5.55%;氢键含量显著增加 (P<0.05),说明肌原纤维蛋白与酶解褐藻寡糖通过氢键作用结合为共价聚合物;巯基含量显著降低,表面疏水性呈升高趋势,说明酶解褐藻寡糖的加入促进肌原纤维蛋白在模拟口腔消化液中展开蛋白结构。综上,酶解褐藻寡糖的添加能促使鲢肌原纤维蛋白分子结构在模拟口腔消化液中展开,推测这可能有利于蛋白后续的消化吸收。
  • 图  1  肌原纤维蛋白和寡糖-蛋白复合物口腔消化产物傅里叶红外光谱 (a) 和二级结构含量 (b)

    注:下标1是α-螺旋显著性,下标2是β-折叠显著性,下标3是β-转角显著性,下标4是无规卷曲显著性。

    Figure  1.  Fourier infrared spectroscopy (a) and secondary structure content (b) of MP and EAO-MP oral digestive products

    Note: Endnote subscript 1 is α-helix significance; endnote subscript 2 is β-helix significance; endnote subscript 3 is β-turn significance; endnote subscript 4 is random coil significance.

    图  2  肌原纤维蛋白和寡糖-蛋白复合物口腔消化产物内源荧光光谱 (a) 和最大荧光强度 (b)

    注:不同大写字母表示在同一模拟口腔消化时间中,不同消化产物之间存在显著性差异 (P<0.05);不同小写字母表示在同组消化产物中,不同模拟口腔消化时间之间存在显著性差异 (P<0.05);表2图4图6同此。

    Figure  2.  Endogenous fluorescence spectra (a) and maximum fluorescence intensity (b) of MP and EAO-MP oral digestive products

    Note:Values with different capital letters indicate significant differences among different digestive products at the same simulated oral digestion time (P<0.05); values with different lowercase letters indicate significant differences in the same group of digestion products at different simulated oral digestion time (P<0.05). The same case in Table 2 and Fig. 4Fig. 6.

    图  3  肌原纤维蛋白和寡糖-蛋白复合物口腔消化产物紫外吸收光谱 (a) 和紫外二阶导数光谱 (b)

    Figure  3.  UV absorption spectra (a) and second order derivative spectra (b) of MP and EAO-MP oral digestive products

    图  4  肌原纤维蛋白和寡糖-蛋白复合物口腔消化产物总巯基 (a) 和活性巯基质量摩尔浓度 (b)

    Figure  4.  Molality of total sulfhydryl (a) and active sulfhydryl (b) of MP and EAO-MP oral digestive products

    图  5  肌原纤维蛋白和寡糖-蛋白复合物口腔消化产物氢键质量浓度

    Figure  5.  Hydrogen bond mass comcentration of MP and EAO-MP oral digestive products

    图  6  肌原纤维蛋白和寡糖-蛋白复合物口腔消化产物蛋白表面疏水性

    Figure  6.  Surface hydrophobicity of MP and EAO-MP oral digestive products

    表  1  口腔消化组别

    Table  1.   Oral digestion group

    组别 Group                        名称 Name
    未消化鲢肌原纤维蛋白Undigested silver carp myofibrillar protein M0
    鲢肌原纤维蛋白模拟口腔消化5 sSilver carp myofibrillar protein after simulated oral digestion for 5 s M5
    鲢肌原纤维蛋白模拟口腔消化15 sSilver carp myofibrillar protein after simulated oral digestion for 15 s M15
    未消化鲢肌原纤维蛋白-寡糖复合物Undigested silver carp myofibrillar protein-alginate oligosaccharide complex A0
    鲢肌原纤维蛋白-寡糖复合物模拟口腔消化5 sSilver carp myofibrillar protein-alginate oligosaccharide complex after simulated oral digestion for 5 s A5
    鲢肌原纤维蛋白-寡糖复合物模拟口腔消化15 sSilver carp myofibrillar protein-alginate oligosaccharide complex after simulated oral digestion for 15 s A15
    下载: 导出CSV

    表  2  紫外二阶导数生成 r

    Table  2.   UV second order derivative generated r value

    模拟口腔消化时间Simulated oral digestion time/s鲢肌原纤维
    蛋白组 (M组) MP group
    寡糖-蛋白
    复合物组 (A组)EAO-MP group
    01.11±0.18Aa1.62±0.88Aa
    50.98±0.27Aa1.12±0.16Aa
    150.97±0.16Aa1.55±0.31Aa
    下载: 导出CSV
  • [1] 尹艺霖, 刘学军. 不同超声功率处理对鲢鱼肌原纤维蛋白理化特性及凝胶品质的影响[J]. 肉类研究, 2019, 33(3): 14-19.
    [2] WALAYAT N, WANG X K, LIU J H, et al. Kappa-carrageenan as an effective cryoprotectant on water mobility and functional properties of grass carp myofibrillar protein gel during frozen storage[J]. LWT, 2022, 154: 112675. doi: 10.1016/j.lwt.2021.112675
    [3] LU S, NA K, WEI J N, et al. Alginate oligosaccharides: the structure-function relationships and the directional preparation for application[J]. Carbohydr Polym, 2022, 284: 119225. doi: 10.1016/j.carbpol.2022.119225
    [4] 荣婧, 仇超颖, 胡晓, 等. 鸢乌贼肌原纤维蛋白糖基化产物功能特性研究[J]. 南方水产科学, 2018, 14(1): 68-76.
    [5] 虞铭霞, 张怡, 张宾. 海藻糖和褐藻胶寡糖对冻藏紫贻贝品质的影响[J]. 现代食品科技, 2019, 35(9): 163-169.
    [6] 张丽, 史洪涛, 李月勤, 等. 褐藻寡糖对断奶仔猪生长性能、抗氧化性能和肠道消化吸收功能的影响[J]. 中国饲料, 2018, 29(14): 56-61.
    [7] CHEN J Y, CHEN Q M, XIE C Q, et al. Effects of simulated gastric and intestinal digestion on chitooligosaccharides in two in vitro models[J]. Int J Food Sci Tech, 2020, 55(5): 1881-90. doi: 10.1111/ijfs.14337
    [8] 仇超颖, 荣婧, 胡晓, 等. 糖基化鸢乌贼肌原纤维蛋白体外消化产物抗氧化性研究[J]. 南方水产科学, 2018, 14(6): 105-112. doi: 10.12131/20180074
    [9] SAIGUSA M, NISHIZAWA M, SHIMIZU Y, et al. In vitro and in vivo anti-inflammatory activity of digested peptides derived from salmon myofibrillar protein conjugated with a small quantity of alginate oligosaccharide[J]. Biosci Biotech Bioch, 2015, 79(9): 1518-1527. doi: 10.1080/09168451.2015.1031075
    [10] WANG X M, CHEN J S. Food oral processing: recent developments and challenges[J]. Curr Opin Colloid Interface Sci, 2017, 28: 22-30. doi: 10.1016/j.cocis.2017.01.001
    [11] 杨天, 耿文豪, 郑志红, 等. 褐藻寡糖对鲢鱼鱼糜稳定性、分子间作用力及肌原纤维蛋白结构的影响[J]. 肉类研究, 2021, 35(7): 1-8.
    [12] 仪淑敏, 李睿智, 陈杨, 等. 白鲢鱼肌原纤维蛋白双向电泳分析体系的建立[J]. 食品科学, 2017, 38(1): 41-46.
    [13] MINEKUS M, ALMINGER M, ALVITO P, et al. A standardised static in vitro digestion method suitable for food: an international consensus[J]. Food Funct, 2014, 5(6): 1113-1124. doi: 10.1039/C3FO60702J
    [14] XU Y J, ZHEAO X, BIAN G L, et al. Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: effect of glycosylation[J]. Food Sci Technol, 2018, 95: 209-215.
    [15] WANG Z F, HE Z F, ZHANG D, et al. Effect of multiple freeze-thaw cycles on protein and lipid oxidation in rabbit meat[J]. Int J Food Sci Technol, 2021, 56(6): 3004-3015. doi: 10.1111/ijfs.14943
    [16] 哈斯, 韩玲钰, 许喆, 等. 碱性pH对马鲛鱼肌球蛋白热聚集行为的影响[J]. 现代食品科技, 2022, 38(4): 114-120, 61. doi: 10.13982/j.mfst.1673-9078.2022.4.0719
    [17] YILDIZ G, DING J Z, ANDRADE J, et al. Effect of plant protein-polysaccharide complexes produced by mano-thermo-sonication and pH-shifting on the structure and stability of oil-in-water emulsions[J]. Innov Food Sci Emerg Technol, 2018, 47: 317-25. doi: 10.1016/j.ifset.2018.03.005
    [18] LI T F, ZHAO J X, HUANG J, et al. Improvement of the quality of surimi products with over-drying potato starches [J]. J Food Qual, 2017: 1417856. Doi: 10.1155/2017/1417856.
    [19] ZHANG Y M, PUOLANNE E, ERTBJERG P. Mimicking myofibrillar protein denaturation in frozen-thawed meat: effect of pH at high ionic strength[J]. Food Chem, 2021, 338: 128017. doi: 10.1016/j.foodchem.2020.128017
    [20] XU Y J, DONG M, TANG C B, et al. Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties[J]. LWT, 2020, 117: 108664. doi: 10.1016/j.lwt.2019.108664
    [21] XIE F, SHAO H L, HU X C. Effect of storage time and concentration on structure of regenerated silk fibroin solution[J]. Int J Mod Phys B, 2006, 20(25n27): 3878-3883. doi: 10.1142/S0217979206040520
    [22] ZHONG Y Y, HAN P, SUN S L, et al. Effects of apple polyphenols and hydroxypropyl-β-cyclodextrin inclusion complexes on the oxidation of myofibrillar proteins and microstructures in lamb during frozen storage[J]. Food Chem, 2022, 375: 131874. doi: 10.1016/j.foodchem.2021.131874
    [23] 梁雯雯, 杨天, 郭建, 等. 升温方式对鲢鱼肌球蛋白结构和理化性质的影响[J]. 食品科学, 2021, 42(21): 24-31. doi: 10.7506/spkx1002-6630-20201012-086
    [24] 陈金玉, 李彬, 何丽丽, 等. 海藻糖和甘露醇对冻融循环引起的虾蛄肌原纤维蛋白结构和功能特性变化的影响[J]. 食品科学, 2019, 40(16): 30-37. doi: 10.7506/spkx1002-6630-20180606-087
    [25] XU Z Z, HUANG G Q, XU T C, et al. Comparative study on the Maillard reaction of chitosan oligosaccharide and glucose with soybean protein isolate[J]. Int J Biol Macromol, 2019, 131: 601-607. doi: 10.1016/j.ijbiomac.2019.03.101
    [26] QIU Y J, JIANG H, DONG Y Y, et al. Expression and biochemical characterization of a novel fucoidanase from flavobacterium algicola with the principal product of fucoidan-derived disaccharide[J]. Foods, 2022, 11(7): 1025. doi: 10.3390/foods11071025
    [27] 林巍, 刘晓兰, 任健, 等. 3种还原糖对芸豆清蛋白糖基化改性产物乳化性及结构的影响[J]. 食品与机械, 2019, 35(10): 170-173.
    [28] YANG X Y, SU Y, LI L. Study of soybean gel induced by Lactobacillus plantarum: protein structure and intermolecular interaction[J]. LWT-Food Sci Technol, 2019, 119(2): 108794.
    [29] 杨天, 郑志红, 张紫薇, 等. 酶解海洋壳寡糖和褐藻寡糖对鲢鱼糜热稳定性、化学作用力及蛋白质结构的影响[J]. 大连海洋大学学报, 2022, 37(1): 157-165.
    [30] LU H, LIANG Y H, ZHANG X M, et al. Effects of cathepsins on gel strength and water-holding capacity of myofibrillar protein gels from bighead carp (Aristichthys nobilis) under a hydroxyl radical-generation oxidizing system[J]. Foods, 2022, 11(3): 330. doi: 10.3390/foods11030330
    [31] 毛小雨, 许馨予, 杨鹄隽, 等. 紫花芸豆蛋白体外消化产物的抗氧化活性及结构特征分析[J]. 食品科学, 2021, 42(3): 56-62.
    [32] LI X P, LIU C K, WANG J X, et al. Tea polyphenols affect oxidative modification and solution stability of myofibrillar protein from grass carp (Ctenopharyngodon idellus)[J]. Food Biophys, 2020, 15(4): 397-408. doi: 10.1007/s11483-020-09635-x
    [33] SHUI S S, QI H, SHAIMAA H, et al. Kappa-carrageenan and its oligosaccharides maintain the physicochemical properties of myofibrillar proteins in shrimp mud (Xia-Hua) during frozen storage[J]. J Food Sci, 2021, 86(1): 140-148. doi: 10.1111/1750-3841.15547
    [34] 高涛, 罗黄洋, 吴韧, 等. 川明参多糖在体外模拟消化过程中的结构变化及对消化酶活性的影响[J]. 食品与发酵工业, 2021, 47(23): 98-105.
    [35] 刘郁琪, 覃小丽, 阚建全, 等. 酪蛋白与可溶性大豆多糖的酶促糖基化产物制备及其性能分析[J]. 食品科学, 2020, 41(19): 74-82.
    [36] WALAYAT N, TANG W, WANG X P, et al. Effective role of konjac oligosaccharide against oxidative changes in silver carp proteins during fluctuated frozen storage[J]. Food Hydrocoll, 2022, 131: 107761. doi: 10.1016/j.foodhyd.2022.107761
    [37] 王伟, 王昱, 陈日新, 等. 海藻酸钠分子质量对低脂乳化肠凝胶特性的影响[J]. 肉类研究, 2019, 33(6): 1-6.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-23
  • 修回日期:  2022-10-19
  • 录用日期:  2022-12-08
  • 网络出版日期:  2023-02-20

目录

    /

    返回文章
    返回