留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凡纳滨对虾淡化养殖池塘浮游细菌群落时空变化及其对理化因子的响应

祁峰 热比古丽·沙吾提 咸玉兰 韩军军 米乃瓦尔·木衣提 陈韩飞 孙世萍 马燕武 陈朋

祁峰, 热比古丽·沙吾提, 咸玉兰, 韩军军, 米乃瓦尔·木衣提, 陈韩飞, 孙世萍, 马燕武, 陈朋. 凡纳滨对虾淡化养殖池塘浮游细菌群落时空变化及其对理化因子的响应[J]. 南方水产科学. doi: 10.12131/20220192
引用本文: 祁峰, 热比古丽·沙吾提, 咸玉兰, 韩军军, 米乃瓦尔·木衣提, 陈韩飞, 孙世萍, 马燕武, 陈朋. 凡纳滨对虾淡化养殖池塘浮游细菌群落时空变化及其对理化因子的响应[J]. 南方水产科学. doi: 10.12131/20220192
QI Feng, SHAWUTI Rebiguli, XIAN Yulan, HAN Junjun, MINAWAER Muyiti, CHEN Hanfei, SUN Shiping, MA Yanwu, CHEN Peng. Spatio-temporal changes of bacterioplankton communities in Litopenaeus vannamei desalinated ponds and their responses to physicochemical factors[J]. South China Fisheries Science. doi: 10.12131/20220192
Citation: QI Feng, SHAWUTI Rebiguli, XIAN Yulan, HAN Junjun, MINAWAER Muyiti, CHEN Hanfei, SUN Shiping, MA Yanwu, CHEN Peng. Spatio-temporal changes of bacterioplankton communities in Litopenaeus vannamei desalinated ponds and their responses to physicochemical factors[J]. South China Fisheries Science. doi: 10.12131/20220192

凡纳滨对虾淡化养殖池塘浮游细菌群落时空变化及其对理化因子的响应

doi: 10.12131/20220192
基金项目: 新疆维吾尔自治区自然科学计划 (自然科学基金) 面上项目 (2020D01A102)
详细信息
    作者简介:

    祁峰:祁 峰 (1981—),男,高级工程师,硕士,从事水域生态学研究。E-mail: 6481135@qq.com

    通讯作者:

    陈 朋 (1982—),男,高级工程师,硕士,从事渔业生态学研究。E-mail: 290189260@qq.com

  • 中图分类号: S 917.1

Spatio-temporal changes of bacterioplankton communities in Litopenaeus vannamei desalinated ponds and their responses to physicochemical factors

  • 摘要: 浮游细菌的调控是对虾养殖水体环境控制策略的核心内容,探究浮游细菌群落构建的一般规律,可进一步推动对虾养殖水体水质调控技术的研究。运用16S rRNA高通量测序技术,对凡纳滨对虾 (Litopenaeus vannamei) 淡化养殖池塘进行了12次周际调查。结果显示,48个样品共获得2 854个OTUs (97%相似性),序列比对发现古细菌2门1纲1科1属,细菌30门59纲98目199科433属,其中优势菌群25属。优势菌群在组成上有较高的相似性,但各池优势菌群在分布和相对丰度变动上有较大差异。各池系统发育多样性指数总平均值为77.57,变幅为24.39~111.65;香农多样性指数总平均值为3.96,变幅为2.64~5.06。物种丰富度指数总平均值为716,变幅为229~1 054。非度量多维标度分析 (NMDS) 表明各池塘浮游细菌群落在养殖初期差异较大,至中、后期差异减小,冗余分析 (RDA) 显示活性磷、碱度、溶解氧和硫化物可显著影响浮游细菌的群落结构。
  • 图  1  凡纳滨对虾养殖池塘门水平的浮游细菌组成

    Figure  1.  Composition of bacteriaoplankon at phylum level in L. vannamei ponds

    图  2  各池 (A、B和C) 优势菌群组成及变动

    Figure  2.  Composition and changes of dominant flora in each pond (A, B and C)

    图  3  不同池塘α多样性系数分析

    注:箱体上中下线分别为75、50 (中位数) 和25分位数,轴须线最长不超过1.5倍箱体范围,黑色空心圆示平均数。差异显著性用* (P<0.05)、** (P<0.01)以及*** (P<0.001) 表示。图中的样本量如下:A:n=22、B:n=12、C:n=12。

    Figure  3.  α diversity index analysis of bacterioplankton in three ponds

    Note: The upper, middle and lower lines of the box are 75, 50 (Median) and 25 quantiles, respectively. The maximum length of whiskers shall not exceed 1.5 times of the box range. The black hollow circles represent the average value. The significant differences were represented by * (P<0.05), ** (P<0.01) and *** (P<0.001). The numbers of replicated samples in this figure are: A: n=22; B: n=12; C: n=12.

    图  4  凡纳滨对虾养殖池塘浮游细菌群落NMDS分析

    Figure  4.  NMDS analysis of bacterioplankton community in L. vannamei pond

    图  5  各池浮游细菌属水平上共有和特有属的数量

    Figure  5.  Number of common and endemic genera of bacterioplankton at genus level in each pond

    图  6  各池浮游细菌群落的线性判别分析 (菌群LDA>4)

    Figure  6.  Linear discriminant analysis of bacterioplankton community in each pond (Bacterial flora with LDA>4 are listed)

    图  7  优势菌群分布和群落多样性 (H) 与主要理化因子之间的关系 (Ⅱ型标尺)

    注:Aci. 不动杆菌属;Aer. 气单胞菌属;Fla. 黄杆菌属;Gem. 芽殖杆菌属;GpI. GpIIa;Ilu. 微酸菌属;Lim. 湖栖菌属;Pol. 多核杆菌;Rho. 红杆菌属;Sed. 沉积物杆状菌属;Spa. 发光细菌属;Sph. 鞘脂菌属。

    Figure  7.  Species associations of dominan flora and diversity (H) with environmental factors (Scaling Ⅱ)

    Note: Aci. Aeromonas sp.; Aer. Flavobacterium sp.; Fla. Gemmobacter sp.; Gem. GpIIa; GpI. Ilumatobacter sp.; Ilu. Limnohabitans sp.; Lim. Polynucleobacter sp.; Pol. Rhodobacter sp.; Rho. Sediminibacterium sp.; Sed. Spartobacteria genera incertae sedis; Spa. Sphingorhabdus sp.; Sph. Sphingomonas sp..

    表  1  凡纳滨对虾养殖池塘水体主要理化因子

    Table  1.   Environmental factors in L. vannamei ponds

    环境因子
    Environmental factor
    池塘A
    Pond A
    池塘B
    Pond B
    池塘C
    Pond C
    水温 T/℃ 26.19±2.01 26.15±1.57 26.37±2.00
    pH 8.1±0.50 8.29±0.37 8.30±0.38
    溶解氧质量浓度 DO/(mg·L−1) 8±0.68 8.45±1.17 8.11±1.15
    铵态氮质量浓度 NH4-N/(mg·L−1) 0.45±0.73 0.44±0.39 0.33±0.27
    亚硝酸氮质量浓度 NO2-N/(mg·L−1) 0.01±0.01 0.01±0.01 0.01±0.01
    硝酸态氮质量浓度 NO3-N/(mg·L−1) 0.34±0.44 0.41±0.42 0.48±0.53
    活性磷质量浓度 PO4-P/(mg·L−1) 0.12±0.14 0.37±0.24 0.22±0.28
    活性硅酸盐质量浓度 SiO3-Si/(mg·L−1) 11.2±3.55 12.38±7.38 4.03±2.98
    高锰酸盐指数 CODMn/(mg·L−1) 8.34±7.19 6.12±3.18 5.34±2.91
    叶绿素质量浓度 Chl-a/(mg·L−1) 75.78±131.01 56.13±42.81 58.36±61.48
    硫化物质量浓度S ul/(mg·L−1) 0.03±0.04 0.02±0.01 0.02±0.01
    矿化度质量浓度 MW/(mg·L−1) 1209.44±2445.58 813.39±171.69 814.35±41.91
    碱度 ALK/(mg·L−1) 138.18±12.06 115.32±33.82 84.46±14.73
    总硬度 HRC/(mg·L−1) 362.76±395.28 476.5±227.34 349.36±60.18
    下载: 导出CSV

    表  2  各样本有效序列数据统计

    Table  2.   Valid sequences of each sample

    样品
    Sample
    条形码
    Barcode
    有效序列
    Valid sequence
    碱基数
    Base number
    平均长度
    Mean length
    最短序列长度
    Min. length
    最长序列长度
    Max. length
    S1GTAACA82 73634 604 966418.26363469
    S2CCAGAC81 90534 619 470422.68361476
    S3GGTGAA56 85923 683 959416.54367475
    S4TGCATC85 21235 667 198418.57353469
    S5TCGACC83 24634 547 936415.01365470
    S6GTCGCG73 82930 547 465413.76362453
    S7CGGATG83 66234 668 763414.39356465
    S8GTGAAA84 38434 811 366412.54350466
    S9ATCTTG100 94541 590 813412.01350452
    S10TATGCA73 80130 659 241415.43352459
    S11GTAACA86 47135 924 249415.45354471
    S12GCGAGG90 43237 722 526417.14351465
    S13CACGAT54 43922 735 194417.63373465
    S14GCGGTA44 22718 478 585417.81352471
    S15TATCGA61 43125 638 627417.36359473
    S16ATCACG52 38421 792 829416.02376471
    S17CGGATG99 21141 215 038415.43360473
    S18CGCATA100 00141 427 908414.27372476
    S19TGCATC65 71227 246 907414.64359476
    S20TCAGTA76 02931 690 841416.83362471
    S21CGGCAC75 20231 405 455417.61364469
    S22ATCACG71 60530 328 221423.55352470
    S23CGGATG63 35826 635 233420.39367470
    S24GTGAAA56 42923 698 925419.98350471
    S25TCAGTA92 40038 487 742416.53355435
    S26GAAGTG87 30537 043 958424.31368448
    S27TCGACC94 07539 472 386419.58360464
    S28CTTGTA52 27322 054 548421.91373472
    S29GTTTCG44 69718 684 447418.02360462
    S30ATCTTG59 73725 072 871419.72365465
    S32GCCATC78 46232 993 239420.5357474
    S33TGTGTT69 61329 167 734419351474
    S34CTTGTA56 08323 551 548419.94356471
    S35GTTTCG45 70118 993 334415.6359464
    S36TTCGTA46 33719 212 573414.63356468
    S37CCAGAC51 97821 598 326415.53372436
    S38AGCAGT77 23331 835 991412.21350470
    S39GAGGAA75 22631 060 291412.89370468
    S40AAGGTA46 92019 633 227418.44352450
    S41ATCACG43 98318 242 559414.76352469
    S42TAGGAC66 63927 702 230415.71356470
    S43TGGACG49 20620 369 621413.97357472
    S44AGAACA50 32220 765 128412.65356469
    S45GGTGTG41 16917 011 770413.22350471
    S46AACTAT67 69128 070 176414.68357468
    S47ACTGCG60 22025 559 117424.43359474
    S48TGTGTT94 26139 467 506418.7355474
    S49TAGGAC86 90436 530 365420.35353467
    下载: 导出CSV
  • [1] CABELLO F C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal healthy and for the environment[J]. Environ Microbiol, 2006, 8: 1137-1144. doi: 10.1111/j.1462-2920.2006.01054.x
    [2] MA Z, SONG X, WAN R, et al. A modified water quality index for intensive shrimp ponds of Litopenaeus vannamei[J]. Ecol Indic, 2013, 24: 287-293. doi: 10.1016/j.ecolind.2012.06.024
    [3] GONZALEZ J M, SIMO R, MASSANA R, et al. Bacterial community structure associated with a dimethylsulfo niopropionate-producing North Atlantic algal bloom[J]. Appl Environ Microb, 2000, 66: 4237-4246. doi: 10.1128/AEM.66.10.4237-4246.2000
    [4] WEI C L, ZENG Y H, TANG K X, et al. Comparison of bacterioplankton communities in three mariculture ponds farming different commercial animals in subtropical Chinese coast[J]. Hydrobiologia, 2009, 632: 107-126. doi: 10.1007/s10750-009-9831-8
    [5] CARON D A. Inorganic nutrients, bacteria, and the microbial loop[J]. Microb Ecol, 1994, 28: 295-298. doi: 10.1007/BF00166820
    [6] COTNER J B, BIDDANDA B. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems[J]. Ecosystems, 2002, 5: 105-121. doi: 10.1007/s10021-001-0059-3
    [7] LEMONNIER H, COURTIES C, MUGNIER C, et al. Nutrient and microbial dynamics in eutrophying shrimp ponds affected or unaffected by vibriosis[J]. Mar Pollut Bull 2010, 60: 402-411.
    [8] AMANN R I. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev, 1995, 59: 143-169. doi: 10.1128/mr.59.1.143-169.1995
    [9] LI C, LIU J, CHEN X, et al. Determinism governs the succession of disturbed bacterioplankton communities in a coastal maricultural ecosystem[J]. Sci Total Environ, 2022, 828: 154457. doi: 10.1016/j.scitotenv.2022.154457
    [10] LIU C H, CHANG F H, YANG J W, et al. Free-living marine bacterioplankton composition and diversity along the Kuroshio region[J]. Deep-Sea Res I, 2022, 183: 103741. doi: 10.1016/j.dsr.2022.103741
    [11] LU Z B, REN Z M, LIN W H, et al. Succession, sources, and assembly of bacterial community in the developing crab larval microbiome[J]. Aquaculture, 2021, 548: 737600.
    [12] LIU Y P, PAN B Z, ZHU X Z, et al. Patterns of microbial communities and their relationships with water quality in a large-scale water transfer system[J]. J Environ Manage, 2022, 319: 115678. doi: 10.1016/j.jenvman.2022.115678
    [13] 靳燕, 邱莹, 董志, 等. 北运河浮游细菌集合群落空间变化的环境解释[J]. 中国环境科学, 2021, 41(3): 1378-1386. doi: 10.3969/j.issn.1000-6923.2021.03.041
    [14] 杨淑芳. 凡纳滨对虾养殖池塘水质动态变化及细菌多样性研究[D]. 厦门: 集美大学, 2017: 10-19.
    [15] 张皓. 养殖环境微生物群落的动态变化及与水环境的互作[D]. 苏州: 苏州大学, 2015: 16-29.
    [16] YANG W, ZHENG C, ZHENG Z M, et al. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability[J]. Ecotox Environ Safe, 2018, 156: 366-374. doi: 10.1016/j.ecoenv.2018.03.043
    [17] YANG W, ZHU J, ZHENG C, et al. Succession of bacterioplankton community in intensive shrimp (Litopenaeus vannamei) aquaculture systems[J]. Aquaculture, 2018, 497: 200-213. doi: 10.1016/j.aquaculture.2018.07.053
    [18] 国家环境保护总局水和废水检测分析方法编委会. 水和废水检测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002: 30-152.
    [19] EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461. doi: 10.1093/bioinformatics/btq461
    [20] AKSNES D L, WASSMANN P. Modeling the significance of zooplankton grazing for export production[J]. Limnol Oceanogr, 1993, 38(5): 978-985. doi: 10.4319/lo.1993.38.5.0978
    [21] FAITH D P. Conservation evaluation and phylogenetic diversity[J]. Biol Conserv, 1992, 61: 1-10. doi: 10.1016/0006-3207(92)91201-3
    [22] SHANNON C E, WEAVER W. The mathematical theory of communication[M]. Urbana, IL: University of Illinois Press, 1949: 55-187.
    [23] 杨家新. 微生物生态学[M]. 北京: 化学工业出版社, 2004: 45-134.
    [24] HAN J H, BAEK K, LEE M H. Lacibacter nakdongensis sp. nov., isolated from river sediment[J]. Int J Syst Evol Microbiol, 2017, 67: 352-356. doi: 10.1099/ijsem.0.001631
    [25] WITCZAK P, CYDZIK-KWIATKOWSKA A, ZIELIŃSKA M. Treatment of the liquid phase of digestate from a biogas plant for water reuse[J]. Bio Tech, 2019, 276: 226-235. doi: 10.1016/j.biortech.2018.12.077
    [26] XUAN L, SHENG Z, LU J, et al. Bacterioplankton community responses and the potential ecological thresholds along disturbance gradients[J]. Sci Total Environ, 2019, 696: 134015. doi: 10.1016/j.scitotenv.2019.134015
    [27] YANG Y, GAO Y, HUANG X, et al. Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river[J]. Environ Pollut, 2019, 245: 290-299. doi: 10.1016/j.envpol.2018.11.002
    [28] COMTE J, del GIORGIO P A. Composition influences the pathway but not the outcome of the metabolic response of bacterioplankton to resource shifts[J]. PLOS One, 2011, 6: e25266. doi: 10.1371/journal.pone.0025266
    [29] ADAMOVICH B V, MEDVINSKY A B, NIKITINA L V, et al. Relations between variations in the lake bacterioplankton abundance and the lake trophic state: evidence from the 20-year monitoring[J]. Ecol Indic, 2019, 7: 120-129.
    [30] 吕锡斌, 吴云成, 陈良强, 等. 赤水河流域浮游细菌群落特征及其与水质的关系[J]. 环境科学学报, 2021, 41(11): 4596-4605. doi: 10.13671/j.hjkxxb.2021.0125
    [31] JING X Y, GOU H, GONG Y, et al. Seasonal dynamics of the coastal bacterioplankton at intensive fish−farming areas of the Yellow Sea, China revealed by high-throughput sequencing[J]. Mar Pollut Bul, 2019, 139: 366-375. doi: 10.1016/j.marpolbul.2018.12.052
    [32] SHADE A, HANNES P, STEVEN D A, et al. Fundamentals of microbial community resistance and resilience[J]. Front Microbiol, 2012, 19(3): 417.
    [33] 郭远涛. 吸附固定化对藻菌共生体在畜禽养殖废水处理中的强化效果研究[D]. 南昌: 南昌大学, 2021: 12-36.
    [34] CAVENDER-BARES J, KOZAK K H, FINE P V A, et al. The merging of community ecology and phylogenetic biology[J]. Ecol Lett, 2009, 12: 693-715. doi: 10.1111/j.1461-0248.2009.01314.x
    [35] CHESSON P. Mechanisms of maintenance of species diversity[J]. Annu Rev Ecol Syst, 2000, 31: 343-366. doi: 10.1146/annurev.ecolsys.31.1.343
    [36] FAN L M, HU G D, QIU L P, et al. Variations in bacterioplankton communities in aquaculture ponds and the influencing factors during the peak period of culture[J]. Environ Pollut, 2020, 258: 113656. doi: 10.1016/j.envpol.2019.113656
    [37] IVES A R, CARPENTER S R. Stability and diversity of ecosystems[J]. Science, 2007, 317: 58-62. doi: 10.1126/science.1133258
    [38] YACHI S, LOREAU M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis[J]. Proc Natl Acad Sci USA, 1999, 96: 1463-1468. doi: 10.1073/pnas.96.4.1463
    [39] 胡晓娟, 李卓佳, 曹煜成, 等. 强天气干扰条件下粤西凡纳滨对虾养殖池塘细菌群落动态特征[J]. 南方水产科学, 2012, 8(5): 52-59. doi: 10.3969/j.issn.2095-0780.2012.05.008
    [40] CONNELL J H. Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a non-equilibrium state[J]. Science, 1978, 199: 1302-1310. doi: 10.1126/science.199.4335.1302
  • 加载中
计量
  • 文章访问数:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-09-28
  • 录用日期:  2022-10-24
  • 网络出版日期:  2022-10-28

目录

    /

    返回文章
    返回