Establishment of reverse transcription droplet digital PCR assay for detection of Tilapia Lake Virus
-
摘要: 建立一种敏感性高、特异性强、重复性好的罗非鱼湖病毒反转录微滴式数字PCR (RT-ddPCR) 检测方法,可为罗非鱼湖病毒的定量检测提供技术支持。参照NCBI中GenBank登陆的TiLV第3段全基因序列,选择hypothetical protein gene基因作为靶位基因设计合成了1 对引物和探针,以TiLV-cDNA为模板,摸索、优化反应方法,建立与实时荧光RT-PCR检测方法的线性关系,分析方法的敏感性、特异性、重复性,最后进行临床样品检测。结果显示,当引物、探针浓度分别为500、300 nmol·L−1且退火温度为54.2 ℃时,建立的TiLV RT-ddPCR扩增反应效率最高、阴阳性微滴分布界限最明显、平均拷贝数较高;敏感性强,检测限低至2 拷贝·μL−1,且在1~90 000 拷贝·μL−1范围内与实时荧光RT-PCR检测的线性关系较好 (R2=0.995 8);检测变异系数低 (4.86%);与其他5 种常见的水生动物疫病病毒 [鲤浮肿病毒 (Carp edema virus, CEV)、锦鲤疱疹病毒 (Koi herpesvirus, KHV)、草鱼出血病毒 (Grass carp reovirus, GCRV)、鲫造血器官坏死病毒 (Cyprinid herpesvirus 2, CyHV-2)、细胞肿大虹彩病毒 (Red sea bream iridovirus, RSIV)] 阳性样品未发生交叉反应;在临床样品的检测中,48 份罗非鱼样品结果均为阴性,5份能力验证样品中3 份为阳性,与能力验证满意结果一致。
-
关键词:
- 罗非鱼湖病毒 /
- 微滴式逆转录数字PCR /
- 线性关系 /
- 特异性 /
- 变异系数
Abstract: To establish an assay of reverse transcription droplet digital PCR (RT-ddPCR) for Tilapia Lake Virus (TiLV), we designed a pair of specific primers and probe based on the conserved region of TiLV segment 3 and evaluated the specificity, sensitivity and repeatability of this method. The structured standard curve was evaluated by using TiLV-cDNA as a template. Finally, the samples were tested. When the concentrations of primers and probes were 500 and 300 nmol·L−1 and the annealing temperature was 54.2 ℃, the established TiLV RT-ddPCR amplification reaction efficiency was the highest, the distribution boundary of the positive and negative droplets was the most obvious, and the average copy number was higher. The RT-ddPCR of TiLV had a lower limit of detection with 2 copies·μL−1 and showed a good linear relationship between 1–90 000 copies·μL−1 (Correlation coefficient R2=0.995 8). There was no amplification reaction to other viruses in aquatic animals. The CV of ddPCR for TiLV-cDNA was 4.86%. There was no cross reaction with the positive samples of other five common aquatic animal disease viruses [Carp edema virus (CEV), Koi herpesvirus (KHV), Grass carp reovirus (GCV), Cyprinid herpesvirus 2 (CyHV-2), Red sea bream iridovirus (RSIV)]. Among the 53 detected samples, 48 were negative, three of five proficiency testing samples were positive, consistent with satisfactory previous proficiency testing results. -
表 1 RT-ddPCR和实时荧光RT-PCR检测罗非鱼湖病毒的引物、探针
Table 1. Primer and probe of RT-ddPCR and real-time RT-PCR for TiLV detection
引物、探针 Primer, probe 引物序列 (5'—3')Primer sequence (5'–3') 上游引物Upstream primer TTCGAGTGCTCAAAGTTCCT 下游引物 Downstream primer CGTGCGTACTCGTTCAGTATA 探针 Probe FAM-TCAAGACCACACTCCTCACCRCAG-BHQ1 表 2 TiLV-cDNA ddPCR反应体系和反应程序
Table 2. Reaction mixture and protocol of ddPCR for TiLV-cDNA detection
反应体系Reaction mixture 用量 Volume/mL 终浓度Final concentration 反应程序 Protocol 温度Temperature/℃ 时间Time 循环次数Cycle 2×ddPCR SupermixTM for Probes 10 1× 95 10 min 1 引物 Primer 0.36 900 nmol·L−1 94 30 s 40 探针 Probe 0.1 250 nmol·L−1 60 60 s 1 cDNA模板 cDNA template 1.0 — 98 10 min 1 双蒸水 ddH2O 8.18 — 4 ∞ — 表 3 不同探针浓度的ddPCR检测的cDNA分子数
Table 3. Normalized detected target DNA by ddPCR at different probe concentrations
探针浓度Probe concentration/ (nmol·L−1) cDNA分子数Normalized detected target DNA/ (拷贝·μL−1) 150 16 400±1 624.84 200 16 040±1 020.89 250 15 060±1 175.79 300 16 080±1 561.57 表 4 不同引物浓度的ddPCR检测的cDNA分子数
Table 4. Normalized detected target cDNA by ddPCR at different primer concentrations
引物浓度Primer concentration/(nmol·L−1) cDNA分子数Normalized detected target DNA/(拷贝·μL−1) 200 15 580±1 165.28 300 16 540±2 645.52 400 16 500±900.57 500 17 360±336.39 600 16 800±331.46 700 16 440±507.02 800 16 760±131.99 900 17 500±861.06 1 000 16 720±244.59 1 100 15 620±1 082.75 1 200 15 760±1 268.10 表 5 不同退火温度ddPCR检测的cDNA分子数
Table 5. Normalized detected target cDNA by ddPCR at different annealing temperatures
退火温度Annealing temperature/℃ cDNA分子数Normalized detected target DNA/ (拷贝·μL−1) 61.0 16 280±1 420.83 60.2 15 140±2 237.92 58.8 15 780±4 166.57 56.7 15 980±1 908.79 54.2 16 360±2 022.83 52.1 16 020±2 432.50 50.8 16 260±1 830.22 50.0 15 740±1 942.53 表 6 TiLV-cDNA ddPCR和实时荧光PCR方法敏感性试验
Table 6. Sensitivity test of ddPCR and real-time PCR for TiLV-cDNA
微滴式数字 PCR ddPCR 实时荧光 PCR real-time PCR 样品/稀释倍数Sample/Dilution ratio 总微滴数*Number of droplets 阳性微滴数*Positive droplets cDNA分子数Normalized detected target DNA/(拷贝·μL−1) cDNA分子数的平均值±标准差$\overline { X}\pm { \rm {SD}}$ cDNA分子数的变异系数CV/% Ct值Ct value 平均值±标准差$\overline { X}\pm { \rm {SD}}$ 变异系数CV/% cDNA 15 547 15 023 79 800 82 800±4 233.20 5.11 20.12 20.41±0.37 1.83 18 355 17 778 81 400 20.83 17 782 17 357 87 800 20.27 cDNA/2 17 010 13 679 38 360 40 880±3 070.53 7.51 21.75 21.60±0.17 0.80 17 982 15 251 44 340 21.41 17 358 14 207 40 140 21.63 cDNA/4 18 420 11 442 22 840 23 220±340.78 1.47 23.13 22.81±0.45 1.97 17 543 11 058 23 420 23.01 18 527 11 687 23 440 22.3 cDNA/8 19 145 6 374 9 520 10 360±3 731.40 36.02 24.05 23.78±0.28 1.16 19 992 7 041 4 220 23.79 18 496 7 108 1 1420 23.5 cDNA/16 19 583 3 906 5 240 5 002±274.95 5.50 24.94 24.86±0.40 1.61 19 997 3 870 5 060 24.43 19 031 3 845 4 700 25.22 cDNA/32 18 624 2 007 2 740 2 736±170.10 6.22 26.32 26.39±0.22 0.85 18 828 1 946 2 560 26.64 18 722 2 176 2 900 26.21 cDNA/64 18 708 757 972 1 092±120.01 10.99 26.79 27.15±0.33 1.20 18 944 858 1 090 27.25 18 618 935 1 212 27.42 cDNA/128 17 010 525 738 738±11.02 1.49 28.41 28.24±0.32 1.14 17 723 556 750 28.44 18 609 567 728 27.87 cDNA/256 18 922 320 402 374±27.15 7.26 29.73 29.78±0.24 0.80 17 785 277 370 30.04 16 723 245 348 29.57 cDNA/512 17 195 134 184 162±19.70 12.16 30.81 30.67±0.19 0.63 13 343 88 156 30.75 16 586 103 146 30.45 cDNA/1 024 18 273 55 70 66±5.29 8.01 32.11 32.10±0.01 0.03 17 070 49 68 32.1 17 303 44 60 32.09 cDNA/2 048 17 316 23 32 29.8±8.84 29.66 32.74 32.86±0.15 0.47 18 791 30 38 32.8 18 324 16 20.6 33.03 cDNA/4 096 18 590 15 19 18.4±0.42 2.26 33.39 33.68±0.46 1.36 16 562 13 18.4 34.21 16 821 13 18.2 33.44 cDNA/8 192 17 892 4 5.2 10.2±5.10 50.00 35.99 35.44±0.61 1.73 16 910 11 15.4 35.55 16 276 7 10.2 34.78 cDNA/16 384 17 413 4 5.4 6.2±0.69 11.17 38.95 37.01±1.70 4.59 17 684 5 6.6 36.27 17 941 5 6.6 35.8 cDNA/32 768 17 761 4 5.2 3.6±1.45 40.18 38.55 37.95±0.73 1.92 18 207 2 2.6 38.16 17 341 2 2.8 37.14 cDNA/65 536 17 395 1 1.4 2±0.60 30.00 18 230 2 2.6 16 999 1 2 cDNA/131 072 18 359 0 0 18 619 0 0 14 472 0 0 cDNA/262 144 15 121 0 0 14 538 0 0 13 526 0 0 cDNA/524 288 15 733 0 0 14 537 0 0 15 672 0 0 注:*. 20 μL反应体系。 Note: *. 20 μL reaction mixture. 表 7 4倍稀释的TiLV-cDNA ddPCR组内重复性试验
Table 7. Replicate of intra-assay for 4-fold dilution of TiLV-cDNA ddPCR
样品编号Sample No. cDNA分子数Normalized detected target DNA/(拷贝·μL−1) TiLV-1 18 200 TiLV-2 18 300 TiLV-3 18 200 TiLV-4 19 220 TiLV-5 18 180 TiLV-6 20 880 TiLV-7 18 620 TiLV-8 18 840 TiLV-9 18 600 TiLV-10 17 380 TiLV-11 17 380 TiLV-12 17 880 TiLV-13 17 400 TiLV-14 19 220 TiLV-15 18 340 平均数±标准差 $\overline { X}\pm { \rm {SD}}$ 18 442.67±896.15 变异系数 CV/% 4.86 表 8 TiLV (能力验证样品) RT-ddPCR与实时荧光RT-PCR检测结果
Table 8. Results of TiLV RT-ddPCR and real-time RT-PCR for proficiency testing samples
能力验证样品编号No. of proficiency testing sample cDNA分子数Normalized detected target DNA/(拷贝·μL−1) Ct值*Ct value 10 17 760 19.90 95 1 920 21.58 122 0 Undet 171 518 24.85 243 0 Undet 注:*. 实时荧光RT-PCR方法 (SC/T 7223—2020)。 Note: *. Real-time RT-PCR (SC/T 7223—2020). -
[1] 胡虎子, 曾伟伟, 王英英, 等. 罗非鱼湖病毒病研究进展[J]. 病毒学报, 2020, 36(1): 145-154. doi: 10.13242/j.cnki.bingduxuebao.003629 [2] EYNGOR M, ZAMOSTIANO R, KEMBOU T J E, et al. Identification of a novel RNA virus lethal to tilapia[J]. J Clin Microbiol, 2014, 52(12): 4137-4146. doi: 10.1128/JCM.00827-14 [3] JANSEN M D, MOHAN C V. Tilapia lake virus (TiLV): literature review[R]. Penang: CGIAR Research Program on Fish Agri-Food Systems, 2017: 1-11. [4] DONG H T, SIRIROOB S, MEEMETTA W, et al. Emergence of tilapia lake virus in Thailand and an alternative semi nested RT-PCR for detection[J]. Aquaculture, 2017, 476: 111-118. doi: 10.1016/j.aquaculture.2017.04.019 [5] BEHERA B K, PRADHAN P K, SWAMINATHAN T R, et al. Emergence of tilapia lake virus associated with mortalities of farmed Nile tilapia Oreochromis niloticus (Linnaeus 1758) in India[J]. Aquaculture, 2018, 484: 168-174. doi: 10.1016/j.aquaculture.2017.11.025 [6] SURACHETPONG W, JANETANAKIT T, NONTHABENJAWAN N, et al. Outbreaks of tilapia lake virus infection, Thailand, 2015–2016[J]. Emerging Infect Dis, 2017, 23(6): 1031-1033. doi: 10.3201/eid2306.161278 [7] LIAMNIMITR P, THAMMATORN W, U-THOOMPORN S, et al. Non-lethal sampling for tilapia lake virus detection by RT-qPCR and cell culture[J]. Aquaculture, 2018, 486: 75-80. doi: 10.1016/j.aquaculture.2017.12.015 [8] NICHOLSON P, FATHI M A, FISCHER A, et al. Detection of tilapia lake virus in Egyptian fish farms experiencing high mortalities in 2015[J]. J Fish Dis, 2017, 40(12): 1925-1928. doi: 10.1111/jfd.12650 [9] FERGUSON H W, KABUUSU R, BELTRAN S, et al. Syncytial hepatitis of farmed tilapia, Oreochromis niloticus(L. ): a case report[J]. J Fish Dis, 2014, 37(6): 583-589. doi: 10.1111/jfd.12142 [10] BACHARACH E, MISHRA N, BRIESE T, et al. Characterization of a novel rthomyxo-like virus causing mass die-offs of tlapia[J]. mBio, 2016, 7(2): e00431-e00416. [11] DEL-POZO J, MISHRA N, KABUUSU R, et al. Syncytial hepatitis of tilapia (Oreochromis niloticus L. ) is associated with Orthomyxovirus-like virions in hepatocytes[J]. Vet Pathol, 2017, 54(1): 164-170. doi: 10.1177/0300985816658100 [12] FATHI M, DICKSON C, DICKSON M, et al. Identification of tilapia lake virus in Egypt in Nile tilapia affected by "summer mortality" syndrome[J]. Aquaculture, 2017, 473: 430-432. doi: 10.1016/j.aquaculture.2017.03.014 [13] AICH N, PAUL A, CHOUDHURY T G, et al. Tilapia Lake Virus (TiLV) disease: current status of understanding[J]. Aquac Fish, 2022, 7(1): 7-17. [14] AMAL M N A, KOH C B, NURLIYANA M, et al. A case of natural co-infection of tilapia lake virus and Aeromonas veronii in a Malaysian red hybrid tilapia (Oreochromis niloticus×O. mossambicus) farm experiencing high mortality[J]. Aquaculture, 2018, 485(2): 12-16. [15] JAEMWIMOL P, RAWIWAN P, TATTIYAPONG P, et al. Susceptibility of important warm water fish species to tilapia lake virus (TiLV) infection[J]. Aquaculture, 2018, 497(1): 462-468. [16] 郑晓聪, 黄倩君, 朱崧琪, 等. 罗非鱼湖病毒病传入风险分析[J]. 中国动物检疫, 2020, 37(10): 27-31. doi: 10.3969/j.issn.1005-944X.2020.10.006 [17] TATTIYAPONG P, DACHAVICHITLEAD W, SURACHETPONG W. Experimental infection of tilapia lake virus (TiLV) in Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.)[J]. Vet Microbiol, 2017, 207: 170-177. doi: 10.1016/j.vetmic.2017.06.014 [18] TSOFACK J E K, ZAMOSTIANO R, WATTED S, et al. Detection of tilapia lake virus in clinical samples by culturing and nested reverse transcription-PCR[J]. J Clin Microbiol, 2017, 55(3): 759-767. doi: 10.1128/JCM.01808-16 [19] DONG H T, ATAGUBA G A, KHUNRAE P, et al. Evidence of TiLV infection in tilapia hatcheries from 2012 to 2017 reveals probable global spread of the disease[J]. Aquaculture, 2017, 479: 579-583. doi: 10.1016/j.aquaculture.2017.06.035 [20] TATTIYAPONG P, SIRIKANCHANA K, SURACHETPONG W. Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish[J]. J Fish Dis, 2018, 41(2): 255-261. doi: 10.1111/jfd.12708 [21] WAIYAMITRA P, TATTIYAPONG P, SIRIKANCHANA K, et al. A TaqMan RT-qPCR assay for tilapia lake virus (TiLV) detection in tilapia[J]. Aquaculture, 2018, 497: 184-188. doi: 10.1016/j.aquaculture.2018.07.060 [22] YIN J Y, WANG Q, WANG Y Y, et al. Development of a simple and rapid reverse transcription-loopmediated isothermal amplification (RT-LAMP) assay for sensitive detection of tilapia lake virus[J]. J Fish Dis, 2019, 42(6): 817-824. doi: 10.1111/jfd.12983 [23] 雷燕, 肖洋, 赵振峰, 等. 罗非鱼罗湖病毒RT-PCR检测方法的建立及初步应用[J]. 广东海洋大学学报, 2019, 39(3): 1-5. doi: 10.3969/j.issn.1673-9159.2019.03.001 [24] 吴凤雷, 黄瑜, 黄郁葱, 等. 罗湖病毒实时荧光定量RT-PCR检测方法的建立[J]. 广东海洋大学学报, 2019, 39(5): 31-37. [25] 徐淑菲, 朱黄鑫, 增韵颖, 等. 罗湖病毒 (TiLV) RT-PCR方法的建立[J]. 渔业研究, 2022, 44(2): 154-161. [26] KIM T G, JEONG S Y, CHO K S. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil[J]. Appl Microbiol Biot, 2014, 98(13): 6105-6113. doi: 10.1007/s00253-014-5794-4 [27] MORISSET D, STEBIH D, MILAVEC M, et al. Quantitative analysis of food and feed samples with droplet digital PCR[J]. PLoS One, 2013, 8(5): e62583. doi: 10.1371/journal.pone.0062583 [28] FLOREN C, WIEDEMANN I, BRENIG B, et al. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR)[J]. Food Chem, 2015, 173: 1054-1058. doi: 10.1016/j.foodchem.2014.10.138 [29] RACKI N, DREO T, GUTIERREZ-AGUIRRE I, et al. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples[J]. Plant Methods, 2014, 10(1): 42. doi: 10.1186/s13007-014-0042-6 [30] CAO Y P, RAITH M R, GRIFFIFITH J F. Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment[J]. Water Res, 2015, 70: 337-349. doi: 10.1016/j.watres.2014.12.008 [31] MAIRIANG D, SONGJAENG A, HANSUEALUEANG P, et al. Application of one-step reverse transcription droplet Digital PCR for dengue virus detection and quantification in clinical specimens[J]. Diagnostics, 2021, 11(4): 639. doi: 10.3390/diagnostics11040639 [32] 董浩, 原霖, 刘洋, 等. 布氏杆菌微滴数字 PCR 方法的建立[J]. 畜牧与兽医, 2022, 54(2): 97-101. [33] 邬旭龙, 肖璐, 宋勇, 等. 非洲猪瘟病毒微滴数字PCR (ddPCR)方法的建立及应用[J]. 微生物学通报, 2017, 44(12): 2839-2846. [34] 刘琳. H5亚型AIV实时荧光RT-PCR、数字PCR方法建立及HA单抗的重组表达[D]. 北京: 中国农业科学院, 2020: 19-25. [35] 马义诚. 牛冠状病毒微滴式数字PCR检测方法的建立及应用[D]. 乌鲁木齐: 新疆农业大学, 2021: 25-41. [36] 张永江, 黄洁芳, 王溪桥, 等. 微滴数字PCR (ddPCR)检测马铃薯S病毒 (PVS)[J]. 农业生物技术学报, 2017, 25(10): 1721-1728. [37] ADAMS M J, LEFKOWITZ E J, KING A M, et al. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses[J]. Arch Virol, 2017, 162(8): 2505-2538. doi: 10.1007/s00705-017-3358-5 [38] CHENGULA A A, MUTOLOKI S, EVENSEN Ø, et al. Tilapia lake virus does not hemagglutinate avian and piscine erythrocytes and NH4Cl does not inhibit viral replication in vitro[J]. Viruses, 2019, 11(12): 1152. doi: 10.3390/v11121152 [39] 熊敏思. 2017 年 FAO 全球渔业回顾及展望[J]. 渔业信息与战略, 2018, 33(1): 71-74. [40] 赵欣, 贾鹏, 刘莹, 等. 鲤疱疹病毒2型微滴式数字PCR检测方法的建立及比较分析[J]. 渔业科学进展, 2017, 38(4): 126-133. [41] 郝中香, 林华, 佘容, 等. 鲤疱疹病毒2型微滴式数字PCR快速检测方法的建立[J]. 中国兽医科学, 2016, 46(2): 167-173. doi: 10.16656/j.issn.1673-4696.2016.02.006 [42] 郝中香. 异育银鲫CyHV-2检测方法的建立及江淮主产区CyHV-2感染的分子流行病学调查[D]. 成都: 四川农业大学, 2016: 25-33. [43] WELI S C, BERNHARDT L V, QVILLER L, et al. Infectious salmon anemia virus shedding from infected Atlantic salmon (Salmo salar L.): application of a droplet digital PCR assay for virus quantification in seawater[J]. Virus, 2021, 13(9): 1770. doi: 10.3390/v13091770 -