Effects of nitrite and microplastic stress on immune, detoxification metabolism and osmoregulation-related indicators in gills of Litopenaeus vannamei
-
摘要: 鳃是对虾重要的呼吸器官,是亚硝酸盐毒性效应的主要靶器官,也是微塑料主要富集的部位之一。鳃组织参与了对虾渗透调节、氮排泄、免疫功能等生理过程,对对虾维持机体健康具有重要意义。为研究亚硝酸盐和微塑料单因素及复合胁迫对凡纳滨对虾 (Litopenaeus vannamei) 鳃组织生理功能的影响,将对虾分为对照组、20 mg·L−1亚硝酸盐胁迫组 (NIT)、10 µg·L−1微塑料胁迫组 (MP)、20 mg·L−1亚硝酸盐和10 µg·L−1微塑料复合胁迫组 (NM),于第14天测定对虾鳃中相关指标变化。结果显示:1) 氧化应激指标丙二醛 (MDA)、过氧化氢 (H2O2) 浓度及抗氧化酶超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)、谷胱甘肽过氧化物酶 (GPx) 活性在胁迫后发生不同程度的改变;2) 解毒代谢指标细胞色素P450基因 (CYP450) 和谷胱甘肽S-转移酶基因 (GST) 相对表达水平在胁迫后发生不同程度的紊乱;3) 渗透调节指标如离子转运酶液泡型ATP酶 (VATP)、Na+/H+交换体7 (NHE7)、Na+/K+-ATP酶亚基α (NKA-α)、Na+/K+-ATP酶亚基β (NKA-β)、碳酸酐酶 (CA) 和水通道蛋白TIP4-1 (TIP4)、钙通道蛋白1 (CCP)、氯通道蛋白2 (CLC)、水通道蛋白 (AQP) 基因的相对表达水平在胁迫后发生不同程度的紊乱;4) 细胞凋亡因子基因 (CASP-3) 相对表达水平在3个胁迫组均显著降低 (P<0.05)。由此推断,亚硝酸盐和微塑料胁迫会诱导凡纳滨对虾鳃中免疫、解毒代谢和渗透调节相关指标变化,进而影响其正常的生理功能。Abstract: Gill is an important respiratory organ of prawns, the main target organ of nitrite toxicity effect, and also one of the main enrichment sites of microplastics. The gill tissue participates in the physiological processes of prawns such as osmoregulation, nitrogen excretion, immune function, etc., which is important for maintaining the prawns' health. In order to investigate the effects of single and combined stress of nitrite and microplastics on the physiological functions of gill tissues of Litopenaeus vannamei, we designed the control group, 20 mg·L−1 nitrite stress group (NIT), 10 μg·L−1 microplastic stress group (MP), 20 mg·L−1 nitrite and 10 μg·L−1 microplastic composite stress group (NM), and then measured the changes of immune and osmotic regulation in gills of shrimps on the 14th day. The results show that: 1) The oxidative stress indicators such as the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) changed at different degrees after the stress. 2) The detoxification metabolic indicators such as the relative expression levels of cytochrome P450 (CYP450), glutathione S-transferase (GST) and apoptosis factor (CASP-3) were disturbed at different degrees after the stress. 3) The relative gene expression levels of the osmoregulation indexes such as ion transporters (VATP, NHE7, NKA-α, NKA-β and CA) and channel proteins (TIP4, CCP, CLC and AQP) occurred at different degrees of disorder after the stress. 4) The apoptosis index sucha as the relative expression level of apoptosis factor (CASP-3) gene decreased significantly in the three groups (P<0.05). Thus, it is inferred that nitrite and microplastic stress can induce the changes of immunity, detoxification metabolism and osmotic regulation in the gills of L. vannamei, affecting its normal physiological functions.
-
Key words:
- Litopenaeus vannamei /
- Gill /
- Nitrite /
- Microplastics /
- Detoxification metabolism /
- Osmotic regulation
-
图 1 亚硝酸盐和微塑料胁迫对凡纳滨对虾鳃中氧化损伤指标的影响
注:数据上标不同字母表示组间差异显著 (P<0.05);后图同此。
Figure 1. Effects of nitrite and microplastics stress on oxidative damage index in gills of L. vannamei
Note: Different letters on the bar indicate significant differences among the groups (P<0.05). The same case in the following figures.
表 1 本研究所用引物序列
Table 1. Primer sequences used in this study
基因名称Gene name 正向引物 (5'—3')Forward primer (5'–3') 反向引物 (5'—3')Reverse primer (5'–3') CASP-3 ATTATAGAGTGCCTGCGTTGCTACC TGCGATATCATGCCTAGATGCTTGG CYP450 CGCCGCCAAGGAAGTGAAGG TGGGAGGCGATGGTGGTGTC GST ACGAACACTACGAACAGAAGGATGC GCCAGGAAGTCGATGTAGGTTAGC VATP GCCAAGTATGAGCACCTAGCAGAC TCGTCCACCACCTTACTGAAGAGAG TIP4 GTCTCTCTGAACCCTTGCCAAACTC GTTGCCTATGATTACCTGCGTCCTC CCP CCCTGAGACCTCTGTTTGCTGTG TGGCAGTGTTCTTCGCATGTTCC NHE7 CACCGCCATCCTCACCAAGTTC ACAGAAGAGCACAGCCACAATACC CLC GCCGATAGGAGGTGTGTTGTTCAG CGAAGAAGCCACGCCAGTAGTTC NKA-α TGAAATCGTGTTTGCCCGTACCTC ACCATCACCAGTTACAGCCACAATG NKA-β GAACCCAGCCGACGAAGAATACG CAGCAACAATAGGTGGCAGGTAGC AQP GCAGCCATCTTGAAGGGAGTGAC ACGAGGACGAAGGTGATGAGGAG CA CCTATTCTGGCTCCCTCACTACCC GTTCATCCTCTGGGCAACACTCG β-actin AGCTCATTGTAGAAGGTGTGATGCC TCCTGACCCTGAAGTACCCCATTG -
[1] DUAN Y F, ZHANG Y, DONG H B, et al. Effect of dietary Clostridium butyricum on growth, intestine health status and resistance to ammonia stress in Pacific white shrimp Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2017, 65: 25-33. doi: 10.1016/j.fsi.2017.03.048 [2] HUANG W T, YIN H, YANG Y Y, et al. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: simulation in vitro with human cell Caco-2 and gut microbiota[J]. Sci Total Environ, 2021, 778: 146264. doi: 10.1016/j.scitotenv.2021.146264 [3] WANG W N, WANG A L, ZHANG Y J, et al. Effects of nitrite on lethal and immune response of Macrobrachium nipponense[J]. Aquaculture, 2004, 232(1/2/3/4): 679-686. [4] DUAN Y, LIU Q S, WANG Y, et al. Impairment of the intestine barrier function in Litopenaeus vannamei exposed to ammonia and nitrite stress[J]. Fish Shellfish Immunol, 2018, 78: 279-288. doi: 10.1016/j.fsi.2018.04.050 [5] HSIEH S L, WU Y C, XU R Q, et al. Effect of polyethylene microplastics on oxidative stress and histopathology damages in Litopenaeus vannamei[J]. Environ Pollut, 2021, 288: 117800. doi: 10.1016/j.envpol.2021.117800 [6] SABOROWSKI R, KOREZ P, RIESBECK S, et al. Shrimp and microplastics: a case study with the Atlantic ditch shrimp Palaemon varians[J]. Ecotox Environ Safe, 2022, 234: 113394. doi: 10.1016/j.ecoenv.2022.113394 [7] RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: first evidence of microplastics in human placenta[J]. Environ Int, 2021, 146: 106274. doi: 10.1016/j.envint.2020.106274 [8] WANG D L, DI Z, WANG L M, et al. Effects of white spot syndrome virus infection on immuno-enzyme activities and ultrastructure in gills of Cherax quadricarinatus[J]. Fish Shellfish Immunol, 2012, 32(5): 645-650. doi: 10.1016/j.fsi.2012.01.005 [9] FOGUESATTO K, BOYLE R T, ROVANI M T, et al. Aquaporin in different moult stages of a freshwater decapod crustacean: expression and participation in muscle hydration control[J]. Comp Biochem Physiol A, 2017, 208: 61-69. doi: 10.1016/j.cbpa.2017.03.003 [10] LINGREL J B. Na, K-ATPase: isoform structure, function, and expression[J]. J Bioenerg Biomembr, 1992, 24(3): 263-270. [11] 陈亭君. 低盐、高亚硝酸盐胁迫日本囊对虾转录组分析及MjTPS基因克隆和功能研究[D]. 湛江: 广东海洋大学, 2022: 64-67. [12] DUAN Y F, XIONG D L, WANG Y, et al. Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach[J]. Sci Total Environ, 2020, 761(2): 143311. [13] YAN M, LI W, CHEN X F, et al. A preliminary study of the association between colonization of microorganism on microplastics and intestinal microbiota in shrimp under natural conditions[J]. J Hazard Mater, 2021, 408: 124882. doi: 10.1016/j.jhazmat.2020.124882 [14] 于萍. 微塑料对中华绒螯蟹毒性效应的初步研究[D]. 上海: 华东师范大学, 2019: 8-22. [15] XIAO J, LUO S S, DU J H, et al. Transcriptomic analysis of gills in nitrite-tolerant and -sensitive families of Litopenaeus vannamei[J]. Comp Biochem Physiol C, 2022, 253: 109212. [16] 周泽妍. 白洋淀入淀河流微塑料分布及其重金属吸附和风险评估[D]. 北京: 北京林业大学, 2021: 54-57. [17] GRAY A D, WEINSTEIN J E. Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio)[J]. Environ Toxicol Chem, 2017, 36(11): 3074-3080. doi: 10.1002/etc.3881 [18] 林艳. 水体亚硝酸盐氮胁迫对鳙生理及肝鳃GSH/GSTs、HIF-1α通路关键因子表达的影响[D]. 南京: 南京农业大学, 2016: 16-22. [19] KOONGOLLA J B, LIN L, PAN Y F, et al. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea[J]. Environ Pollut, 2020, 258: 113734. doi: 10.1016/j.envpol.2019.113734 [20] 熊大林, 段亚飞, 陈成勋, 等. 高温与氨氮复合胁迫对凡纳滨对虾渗透调节的影响[J]. 水产科学, 2021, 40(4): 475-482. doi: 10.16378/j.cnki.1003-1111.19281 [21] GOPALAKRISHNAN S, CHEN F Y, THILAGAM H, et al. Modulation of immune-associated parameters and antioxidant responses in the crab (Scylla serrata) exposed to mercury[J]. Chemosphere, 2013, 90(3): 917-928. doi: 10.1016/j.chemosphere.2012.06.031 [22] 苏家齐, 祝华萍, 朱长波, 等. 盐度和钠离子/钾离子对凡纳滨对虾幼虾存活与组织结构的影响[J]. 南方水产科学, 2021, 17(5): 45-53. doi: 10.12131/20210011 [23] 王佳雯, 卢洁, 姚托, 等. 环境因子和免疫刺激对香港牡蛎免疫指标的影响[J]. 南方水产科学, 2021, 17(4): 18-26. doi: 10.12131/20210051 [24] LIU J, QU W, KADIISKA M B. Role of oxidative stress in cadmium toxicity and carcinogenesis[J]. Toxicol Appl Pharm, 2009, 238(3): 209-214. doi: 10.1016/j.taap.2009.01.029 [25] ARUN S, SUBRAMANIAN P. Antioxidant enzymes in freshwater prawn Macrobrachium malcolmsonii during embryonic and larval development[J]. Comp Biochem Phys B, 1998, 121(3): 273-277. [26] YU P, LIU Z Q, WU D L, et al. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver[J]. Aquat Toxicol, 2018, 200: 28-36. doi: 10.1016/j.aquatox.2018.04.015 [27] BURKINA V, ZAMARATSKAIA G, RANDAK T, et al. Verapamil does not modify catalytic activity of CYP450 in rainbow trout after long-term exposure[J]. Ecotox Environ Safe, 2012, 79(9): 148-152. [28] GUO H, XIAN J A, WANG A L, et al. Analysis of digital gene expression profiling in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress[J]. Fish Shellfish Immunol, 2016, 56: 1-11. doi: 10.1016/j.fsi.2016.06.059 [29] ZHANG W Y, LI J J, CHEN Y M, et al. Exposure time relevance of response to nitrite exposure: insight from transcriptional responses of immune and antioxidant defense in the crayfish, Procambarus clarkii[J]. Aquat Toxicol, 2019, 214: 105262. doi: 10.1016/j.aquatox.2019.105262 [30] HANSLIK L, HUPPERTSBERG S, KÄMMER N, et al. Rethinking the relevance of microplastics as vector for anthropogenic contaminants: adsorption of toxicants to microplastics during exposure in a highly polluted stream - analytical quantification and assessment of toxic effects in zebrafish (Danio rerio)[J]. Sci Total Environ, 2022, 816: 151640. doi: 10.1016/j.scitotenv.2021.151640 [31] MARCO G D, CONTI G O, GIANNETTO A, et al. Embryotoxicity of polystyrene microplastics in zebrafish Danio rerio[J]. Environ Res, 2022, 208: 112552. doi: 10.1016/j.envres.2021.112552 [32] CHANG C C, YEH M S, LIN H K, et al. The effect of Vibrio alginolyticus infection on caspase-3 expression and activity in white shrimp Litopenaeus vannamei[J]. Fish Shellfish Immunl, 2008, 25(5): 672-678. doi: 10.1016/j.fsi.2008.09.004 [33] SANTOS D, LUZIO A, FÉLIX L, et al. Oxidative stress, apoptosis and serotonergic system changes in zebrafish (Danio rerio) gills after long-term exposure to microplastics and copper[J]. Comp Biochem Physiol C, 2022, 258: 109363. [34] FALEIROS R O, GOLDMAN M H S, FURRIEL R P M, et al. Differential adjustment in gill Na+/K+- and V-ATPase activities and transporter mRNA expression during osmoregulatory acclimation in the cinnamon shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae)[J]. J Exp Biol, 2010, 213(22): 3894-3905. doi: 10.1242/jeb.046870 [35] SÁEZ A G, LOZANO E, ZALDÍVAR R A. Evolutionary history of Na, K-ATPases and their osmoregulatory role[J]. Genetica, 2009, 136: 479-490. doi: 10.1007/s10709-009-9356-0 [36] 李丽. 花鳗鲡幼鳗VHA、NKA及FXYD11基因适应盐度变化的分子调节机制[D]. 南京: 南京师范大学, 2015: 36-41. [37] ONKEN H, PUTZENLECHNER M. A V-ATPase drives active, electrogenic and Na+-independent Cl– absorption across the gills of Eriocheir sinensis[J]. J Exp Biol, 1995, 198(3): 767-774. doi: 10.1242/jeb.198.3.767 [38] 邢永泽, 乔莹, 米铁柱, 等. 海月水母螅状体横裂生殖过程中渗透压调节基因表达及酶活性变化分析[J]. 中国海洋大学学报(自然科学版), 2021, 51(S1): 19-23, 127. doi: 10.16441/j.cnki.hdxb.20200353 [39] 郭雯翡. 盐碱胁迫下青海湖裸鲤鳃抑制消减cDNA文库的构建及相关基因的克隆[D]. 上海: 上海海洋大学, 2012: 4-7. [40] GIFFARD-MENA I, BOULO V, AUJOULAT F, et al. Aquaporin molecular characterization in the sea-bass (Dicentrarchus labrax): the effect of salinity on AQP1 and AQP3 expression[J]. Comp Biochem Physoil A, 2007, 148(2): 430-444. doi: 10.1016/j.cbpa.2007.06.002 [41] 李蓓. 基于c-Myc/CLIC4通路探究脂多糖致大鼠海马损伤的致病机制[D]. 哈尔滨: 东北农业大学, 2019: 28-32. -