留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Asterarcys sp. 海水藻株对UV-B辐射的响应及生理机制研究

吕金亭 裴海伟 卫华宁 吴华莲 李涛 吴后波 向文洲

吕金亭, 裴海伟, 卫华宁, 吴华莲, 李涛, 吴后波, 向文洲. Asterarcys sp. 海水藻株对UV-B辐射的响应及生理机制研究[J]. 南方水产科学. doi: 10.12131/20220140
引用本文: 吕金亭, 裴海伟, 卫华宁, 吴华莲, 李涛, 吴后波, 向文洲. Asterarcys sp. 海水藻株对UV-B辐射的响应及生理机制研究[J]. 南方水产科学. doi: 10.12131/20220140
LYU Jinting, PEI Haiwei, WEI Huaning, WU Hualian, LI Tao, WU Houbo, XIANG Wenzhou. Response to UV-B radiation and physiological mechanism of marine microalga Asterarcys sp.[J]. South China Fisheries Science. doi: 10.12131/20220140
Citation: LYU Jinting, PEI Haiwei, WEI Huaning, WU Hualian, LI Tao, WU Houbo, XIANG Wenzhou. Response to UV-B radiation and physiological mechanism of marine microalga Asterarcys sp.[J]. South China Fisheries Science. doi: 10.12131/20220140

Asterarcys sp. 海水藻株对UV-B辐射的响应及生理机制研究

doi: 10.12131/20220140
基金项目: 广东省重点领域研发计划项目 (2020B1111030004);南方海洋科学与工程广东省实验室 (广州) 人才团队引进重大专项 (GML2019ZD0406)
详细信息
    作者简介:

    吕金亭 (1996—),女,硕士研究生,研究方向为微藻生物技术。E-mail: lv_jt2017@126.com

    通讯作者:

    向文洲 (1967—),男,研究员,博士,研究方向为微藻生物技术。E-mail: xwz@scsio.ac.cn

  • 中图分类号: S 968.4

Response to UV-B radiation and physiological mechanism of marine microalga Asterarcys sp.

  • 摘要: 为探究微藻对UV-B辐射的响应及生理机制,进一步提高微藻的潜在应用价值,以Asterarcys sp. SCSIO-44020海水藻株为研究对象,设置5个UV-B辐射处理组 (0、10、30、50和70 min),各组对应的辐射剂量分别为0、150、460、770和1 050 mJ·cm−2,从接种第一天开始,每隔48 h辐射处理1次,直至培养末期,开展UV-B辐射对该藻株的生理生化影响研究。结果表明,该藻株经20 d培养后,与对照组相比,10~50 min处理组的UV-B辐射对藻株生长无显著影响 (P>0.05),70 min处理组对其生长则有显著抑制 (P<0.05)。随着UV-B辐射时间的增加,蛋白质含量呈逐渐上升趋势,总脂含量反之,但各实验组与对照组相比均无显著性变化 (P>0.05)。类菌胞素氨基酸 (Mycosporine-like amino acids, MAAs) 和总类胡萝卜素含量随UV-B处理时间的延长而增加,70 min处理组MAAs含量达到最高,为对照组的1.75倍;而50 min处理组的总糖和MAAs产量达到最高,比对照组分别提高了12.40%和57.61%。综上所述,Asterarcys sp. 海水藻株具有极强的抗UV-B辐射能力,MAAs增加是其适应紫外辐射的关键,间歇式的50 min UV-B辐射处理可作为该藻株生产MAAs等微藻产物的有效调控手段。
  • 图  1  UV-B辐射对Asterarcys sp. SCSIO-44020生长的影响

    Figure  1.  Effect of UV-B radiation on growth of Asterarcys sp. SCSIO-44020

    图  2  UV-B辐射对Asterarcys sp. SCSIO-44020总蛋白质、总脂和总糖质量分数及产量的影响

    注:不同字母表示组间差异显著 (P<0.05),下标数字1和2分别代表质量分数和产量;图4-c同此。

    Figure  2.  Effect of UV-B radiation on mass fractions and yields of protein, total lipid and carbohydrates in Asterarcys sp. SCSIO-44020

    Note: Different letters indicate significant differences between groups (P<0.05), and 1 and 2 represent the mass fraction and yield, respectively. The same case in Fig. 4-c.

    图  3  UV-B辐射对Asterarcys sp. SCSIO-44020游离氨基酸含量的影响

    注:不同字母表示差异显著 (P<0.05)。

    Figure  3.  Effect of UV-B radiation on free amino acids molality of Asterarcys sp. SCSIO-44020

    Note: Different letters indicate significant differences (P<0.05).

    图  4  UV-B辐射对Asterarcys sp. SCSIO-44020中MAAs的影响

    注:a. UV-B辐射对Asterarcys sp. SCSIO-44020甲醇提取物紫外光谱的影响;b. Asterarcys sp. SCSIO-44020甲醇提取物傅里叶变换红外扫描图谱;c. UV-B辐射对Asterarcys sp. SCSIO-44020 MAAs相对含量及相对产量的影响。

    Figure  4.  Effect of UV-B radiation on MAAs in Asterarcys sp. SCSIO-44020

    Note: a. Effect of UV-B radiation on UV scan spectrum analysis of methanol extract of Asterarcys sp. SCSIO-44020; b. FTIR spectrum of methanol extract of methanol extract of Asterarcys sp. SCSIO-44020; c. Effects of UV-B radiation on relative MAAs content and yield of Asterarcys sp. SCSIO-44020.

    图  5  UV-B辐射对Asterarcys sp. SCSIO-44020色素组成的影响

    Figure  5.  Effect of UV-B radiation on pigment composition of Asterarcys sp. SCSIO-44020

    表  1  UV-B辐射对Asterarcys sp. SCSIO-44020脂肪酸组成的影响

    Table  1.   Effect of UV-B radiation on fatty acid composition of Asterarcys sp. SCSIO-44020

    脂肪酸类型
    Type of fatty acid
    相对百分含量 Relative percentage content/%
    0 min10 min30 min50 min70 min
    棕榈酸 C16:0 24.45±0.31a 24.18±0.08ab 23.64±0.14b 23.28±0.06b 22.57±0.00c
    棕榈油酸 C16:1 1.79±0.02b 1.69±0.11b 1.87±0.02ab 2.03±0.02a 2.00±0.03a
    硬脂酸 C18:0 3.87±0.03b 3.91±0.08b 4.09±0.03a 4.14±0.01a 3.76±0.05b
    油酸 C18:1 35.29±0.22a 34.40±0.11b 33.53±0.06c 33.02±0.20c 30.99±0.24d
    亚油酸 C18:2 16.42±0.01e 16.17±0.00d 17.24±0.02c 17.84±0.14b 19.43±0.03a
    亚麻酸 C18:3 15.99±0.21bc 16.31±0.06b 16.24±0.01b 15.90±0.01c 18.01±0.17a
    其他 Other 2.20±0.11b 3.34±0.06a 3.39±0.07a 3.78±0.41a 3.24±0.12a
    饱和脂肪酸 SFAs 29.90±0.24a 29.77±0.02a 29.44±0.08a 29.06±0.05b 28.14±0.03c
    单不饱和脂肪酸 MUFAs 37.68±0.21a 37.75±0.08a 37.08±0.09b 37.20±0.17ab 34.42±0.11c
    多不饱和脂肪酸 PUFAs 32.41±0.03c 32.48±0.06c 33.48±0.01b 33.74±0.12b 37.44±0.15a
    注:同行不同上标字母表示差异显著 (P<0.05)。 Note: Different superscript letters within the same line indicate significant differences (P<0.05).
    下载: 导出CSV

    表  2  UV-B辐射对Asterarcys sp. SCSIO-44020色素含量及产量的影响

    Table  2.   Effect of UV-B radiation on pigment content and yield of Asterarcys sp. SCSIO-44020

    辐射处理时间
    Radiation time/min
    叶绿素a质量分数
    Chl a/%
    叶绿素a产量
    Chl a yield/(mg·L−1)
    类胡萝卜素质量分数
    Car/%
    类胡萝卜素产量
    Car yield/(mg·L−1)
    w(Car)/w(Chla)
    0 1.08±0.00b 63.45±0.20a 0.47±0.01a 27.85±0.37a 0.44±0.01ab
    10 1.11±0.02b 64.38±1.04a 0.47±0.01a 27.37±0.73a 0.43±0.00b
    30 1.13±0.00b 67.83±0.09a 0.49±0.01a 29.47±0.40a 0.43±0.01ab
    50 1.11±0.07b 62.38±3.76a 0.52±0.03a 29.01±1.88a 0.46±0.00a
    70 1.26±0.01a 61.59±0.44a 0.53±0.02a 26.19±1.01a 0.42±0.01b
    注:同列不同上标字母表示差异显著 (P<0.05)。 Note: Different superscript letters within the same column indicate significant differences (P<0.05).
    下载: 导出CSV
  • [1] 魏静, 林莉, 潘雄, 等. 不同环境胁迫因子对藻类分子生物学特性的影响研究进展[J]. 长江科学院院报, 2020, 37(4): 14-24. doi: 10.11988/ckyyb.20190062
    [2] RASTOGI R P, MADAMWAR D, NAKAMOTO H, et al. Resilience and self-regulation processes of microalgae under UV radiation stress[J]. J Photochem Photobiol C, 2020, 43: 100322. doi: 10.1016/j.jphotochemrev.2019.100322
    [3] HÄDER D P, WILLIAMSON C E, WÄNGBERG S Å, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors[J]. Photochem Photobiol Sci, 2015, 14(1): 108-126.
    [4] EL-SHEEKH M M, ALWALEED E A, IBRAHIM A, et al. Detrimental effect of UV-B radiation on growth, photosynthetic pigments, metabolites and ultrastructure of some cyanobacteria and freshwater chlorophyta[J]. Int J Radiat Biol, 2021, 97(2): 265-275. doi: 10.1080/09553002.2021.1851060
    [5] 缪锦来, 阚光锋, 李光友, 等. UV-B辐照培养下南极冰藻的形态和超微结构及主要生化组成的变化[J]. 中国海洋药物, 2003(6): 1-5. doi: 10.3969/j.issn.1002-3461.2003.06.001
    [6] KURINJIMALAR C, KAVITHA G, THEVANATHAN R, et al. Impact of ultraviolet-B radiation on growth and biochemical composition of Botryococcus braunii Kutz.[J]. Curr Sci, 2019, 116(1): 89. doi: 10.18520/cs/v116/i1/89-95
    [7] FUENTES-TRISTAN S, PARRA-SALDIVAR R, IQBAL H M N, et al. Bioinspired biomolecules: mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities[J]. J Photochem Photobiol B, 2019, 201: 111684. doi: 10.1016/j.jphotobiol.2019.111684
    [8] SABER H, EL-SHEEKH M M, IBRAHIM A, et al. Effect of UV-B radiation on amino acids profile, antioxidant enzymes and lipid peroxidation of some cyanobacteria and green algae[J]. Int J Radiat Biol, 2020, 96(9): 1192-1206. doi: 10.1080/09553002.2020.1793025
    [9] VARSHNEY P, BEARDALL J, BHATTACHARYA S, et al. Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide[J]. Algal Res, 2018, 30: 28-37. doi: 10.1016/j.algal.2017.12.006
    [10] SINGH D P, KHATTAR J S, RAJPUT A, et al. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions[J]. PLoS One, 2019, 14(9): e0221930. doi: 10.1371/journal.pone.0221930
    [11] LI T, YANG F F, XU J, et al. Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions[J]. Algal Res, 2020, 45: 101753. doi: 10.1016/j.algal.2019.101753
    [12] HONG J W, KIM S, CHANG J W, et al. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential[J]. Algae, 2012, 27(3): 197-203. doi: 10.4490/algae.2012.27.3.197
    [13] 卫华宁, 王灵, 李涛, 等. 不同氮源及氮浓度对海水驯化藻株Asterarcys sp. 生长及生化组成的影响[J]. 生物技术通报, 2021, 37(10): 34-44.
    [14] KHOZIN-GOLDBERG I, SHRESTHA P, COHEN Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2005, 1738(1/2/3): 63-71.
    [15] LI T, XU J, GAO B Y, et al. Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies[J]. Algal Res, 2016, 16: 481-491. doi: 10.1016/j.algal.2016.04.008
    [16] LI T, WAN L L, LI A F, et al. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations[J]. Chin J Oceanol Limnol, 2013, 31(6): 1306-1314. doi: 10.1007/s00343-013-2316-7
    [17] 李嘉颖, 李涛, 谭丽, 等. 盐度对一株淡水栅藻Scenedesmus sp. 生长及生化组成的影响[J]. 生物技术通报, 2017, 33(7): 155-161.
    [18] 吴燕燕, 张婉, 李来好, 等. 海萝藻中类菌胞素氨基酸的种类分析及抗氧化性能[J]. 中国食品学报, 2018, 18(5): 264-272. doi: 10.16429/j.1009-7848.2018.05.032
    [19] CHANDRA R, PONS-FAUDOA F P, SALDÍVAR R P, et al. Effect of ultra-violet exposure on production of mycosporine-like amino acids and lipids by Lyngbya purpurem[J]. Biomass Bioenerg, 2020, 134: 105475. doi: 10.1016/j.biombioe.2020.105475
    [20] SINGH G, BABELE P K, SINHA R P, et al. Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species[J]. Process Biochem, 2013, 48(5/6): 796-802. doi: 10.1016/j.procbio.2013.04.022
    [21] SINGH A, TYAGI M B, KUMAR A. Cyanobacteria growing on tree barks possess high amount of sunscreen compound mycosporine-like amino acids (MAAs)[J]. Plant Physiol Biochem, 2017, 119: 110-120. doi: 10.1016/j.plaphy.2017.08.020
    [22] SHEN S G, GUO R J, YAN R R, et al. Comparative proteomic analysis of Nostoc flagelliforme reveals the difference in adaptive mechanism in response to different ultraviolet-B radiation treatments[J]. Mol Biol Rep, 2018, 45(6): 1995-2006. doi: 10.1007/s11033-018-4355-9
    [23] XUE L G, ZHANG Y, ZHANG T G, et al. Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria[J]. Crit Rev Microbiol, 2005, 31(2): 79-89. doi: 10.1080/10408410590921727
    [24] LAURION I, ROY S. Growth and photoprotection in three dinoflagellates (including two strains of Alexandrium tamarense) and one diatom exposed to four weeks of natural and enhanced UVB radiation[J]. J Phycol, 2009, 45(1): 16-33. doi: 10.1111/j.1529-8817.2008.00618.x
    [25] 孙小琴, 孙昕, 李鹏飞, 等. 紫外辐射对小球藻光合性能及油脂积累的影响[J]. 中国油脂, 2019, 44(12): 114-119.
    [26] CHEN H, HUANG K X, LIU S S, et al. Effects of ultraviolet (UV) radiation on outdoor-and indoor-cultured Prorocentrum lima, a toxic benthic dinoflagellate[J]. J Ocean Univ, 2021, 20(3): 619-628. doi: 10.1007/s11802-021-4560-3
    [27] 屠燕萍, 俞泓伶, 谢志浩. 三角褐指藻和小角毛藻对UV-B辐射增强的生理生化响应[J]. 生态科学, 2013, 32(4): 474-479.
    [28] FU S M, XUE S, CHEN J, et al. Effects of different short-term UV-B radiation intensities on metabolic characteristics of Porphyra haitanensis[J]. Int J Mol Sci, 2021, 22(4): 2180. doi: 10.3390/ijms22042180
    [29] NOAMAN N H, AKL F, ABDEL-KAREEM M S M, et al. Effect of Ultraviolet-B irradiation on fatty acids, amino acids, protein contents, enzyme activities and ultrastructure of some algae[J]. Eur J Phycol, 2013, 14(1): 67-101.
    [30] 王静, 郭照冰, 王瑾瑾, 等. UV-B对紫球藻生长抑制及生理特性的影响[J]. 水生态学杂志, 2018, 39(6): 114-120. doi: 10.15928/j.1674-3075.2018.06.017
    [31] GONZALEZ-SILVERA D, PÉREZ S, KORBEE N, et al. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta)[J]. J Phycol, 2017, 53(5): 999-1009. doi: 10.1111/jpy.12560
    [32] NAVARRO N P, MANSILLA A, FIGUEROA F L, et al. Short-term effects of solar UV radiation and NO3 supply on the accumulation of mycosporine-like amino acids in Pyropia columbina (Bangiales, Rhodophyta) under spring ozone depletion in the sub-Antarctic region, Chile[J]. Bot Marina, 2014, 57(1): 9-20. doi: 10.1515/bot-2013-0090
    [33] RASTOGI R P, INCHAROENSAKDI A. UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551[J]. Plant Physiol Biochem, 2013, 70: 7-13. doi: 10.1016/j.plaphy.2013.04.021
    [34] DIEHL N, MICHALIK D, ZUCCARELLO G C, et al. Stress metabolite pattern in the eulittoral red alga Pyropia plicata (Bangiales) in New Zealand-mycosporine-like amino acids and heterosides[J]. J Exp Mar Biol Ecol, 2019, 510: 23-30. doi: 10.1016/j.jembe.2018.10.002
    [35] 张英莲. UV-B辐射对华南沿海常见赤潮藻类生长和类菌孢素氨基酸 (MAAs) 含量的影响[D]. 广州: 华南师范大学, 2007: 26-33.
    [36] 王婉如, 张昺林, 张楠, 等. 蓝藻对UV-B增强的响应及其紫外屏蔽物质的研究[J]. 天然产物研究与开发, 2012, 24(9): 1303-1311, 1329. doi: 10.3969/j.issn.1001-6880.2012.09.034
    [37] NASSOUR R, AYASH A. Effects of ultraviolet-B radiation in plant physiology[J]. Agric (Pol'nohospodárstvo), 2021, 67(1): 1-15.
    [38] van den ENDE W, VALLURU R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging?[J]. J Exp Bot, 2009, 60(1): 9-18.
    [39] DEMIR E, KOCAOĞLU S, KAYA B. Protective effects of chlorophyll against the genotoxicity of UVB in Drosophila smart assay[J]. Fresenius Environ Bull, 2008, 17(12): 2180-2186.
    [40] SHEN S G, JIA S R, YAN R R, et al. The physiological responses of terrestrial cyanobacterium Nostoc flagelliforme to different intensities of ultraviolet-B radiation[J]. RSC Adv, 2018, 8(38): 21065-21074. doi: 10.1039/C8RA04024A
    [41] 涂勃. 阳光UV辐射对铜绿微囊藻生理生化特性影响的研究[D]. 武汉: 湖北工业大学, 2018: 5-6.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-15
  • 修回日期:  2022-08-21
  • 录用日期:  2022-10-13
  • 网络出版日期:  2023-02-13

目录

    /

    返回文章
    返回