Response to UV-B radiation and physiological mechanism of marine microalga Asterarcys sp.
-
摘要: 为探究微藻对UV-B辐射的响应及生理机制,进一步提高微藻的潜在应用价值,以Asterarcys sp. SCSIO-44020海水藻株为研究对象,设置5个UV-B辐射处理组 (0、10、30、50和70 min),各组对应的辐射剂量分别为0、150、460、770和1 050 mJ·cm−2,从接种第一天开始,每隔48 h辐射处理1次,直至培养末期,开展UV-B辐射对该藻株的生理生化影响研究。结果表明,该藻株经20 d培养后,与对照组相比,10~50 min处理组的UV-B辐射对藻株生长无显著影响 (P>0.05),70 min处理组对其生长则有显著抑制 (P<0.05)。随着UV-B辐射时间的增加,蛋白质含量呈逐渐上升趋势,总脂含量反之,但各实验组与对照组相比均无显著性变化 (P>0.05)。类菌胞素氨基酸 (Mycosporine-like amino acids, MAAs) 和总类胡萝卜素含量随UV-B处理时间的延长而增加,70 min处理组MAAs含量达到最高,为对照组的1.75倍;而50 min处理组的总糖和MAAs产量达到最高,比对照组分别提高了12.40%和57.61%。综上所述,Asterarcys sp. 海水藻株具有极强的抗UV-B辐射能力,MAAs增加是其适应紫外辐射的关键,间歇式的50 min UV-B辐射处理可作为该藻株生产MAAs等微藻产物的有效调控手段。
-
关键词:
- Asterarcys sp. /
- UV-B辐射 /
- 代谢产物 /
- 类菌胞素氨基酸 /
- 生理响应
Abstract: In order to investigate the response of microalgae to UV-B radiation and their physiological mechanism, and to improve their potential value, we selected Asterarcys sp. SCSIO-44020 as material, and exposed them to UV-B radiation under different radiation conditions (0, 10, 30, 50 and 70 min each time, corresponding to radiation doses of 0, 150, 460, 770 and 1 050 mJ·cm−2) every 48 h until the end of the culture. The results show that, after a 20-day cultivation, UV-B radiation of 10–50 min treatment group had no significant effect on the growth of algae compared with the control group (P>0.05), but the 70 min treatment group inhibited the growth significantly (P<0.05). With the increase of UV-B radiation time, the protein content increased gradually, but the total lipid content decreased, with no siginificant differences between different groups and the control group (P>0.05). The total carotenoid and mycosporine-like amino acids (MAAs) contents increased with the increase of UV-B treatment time, and reached the maximum values in 70 min treatment group, 1.75 times that of the control group. However, compared with the control group, the total carbohydrates and MAAs yields in 50 min treatment group increased 12.40% and 57.61%, respectively, reaching the maximum values. In conclusion, Asterarcys sp. has a strong ability to resist UV-B radiation, and the increase of MAAs is the key to its adapting to UV radiation. Moreover, intermittent treatment of 50 min UV-B radiation is an effective approach to regulate the production of MAAs and other products in microalga.-
Key words:
- Asterarcys sp. /
- UV-B radiation /
- Metabolites /
- MAAs /
- Physiological response
-
图 2 UV-B辐射对Asterarcys sp. SCSIO-44020总蛋白质、总脂和总糖质量分数及产量的影响
注:不同字母表示组间差异显著 (P<0.05),下标数字1和2分别代表质量分数和产量;图4-c同此。
Figure 2. Effect of UV-B radiation on mass fractions and yields of protein, total lipid and carbohydrates in Asterarcys sp. SCSIO-44020
Note: Different letters indicate significant differences between groups (P<0.05), and 1 and 2 represent the mass fraction and yield, respectively. The same case in Fig. 4-c.
图 4 UV-B辐射对Asterarcys sp. SCSIO-44020中MAAs的影响
注:a. UV-B辐射对Asterarcys sp. SCSIO-44020甲醇提取物紫外光谱的影响;b. Asterarcys sp. SCSIO-44020甲醇提取物傅里叶变换红外扫描图谱;c. UV-B辐射对Asterarcys sp. SCSIO-44020 MAAs相对含量及相对产量的影响。
Figure 4. Effect of UV-B radiation on MAAs in Asterarcys sp. SCSIO-44020
Note: a. Effect of UV-B radiation on UV scan spectrum analysis of methanol extract of Asterarcys sp. SCSIO-44020; b. FTIR spectrum of methanol extract of methanol extract of Asterarcys sp. SCSIO-44020; c. Effects of UV-B radiation on relative MAAs content and yield of Asterarcys sp. SCSIO-44020.
表 1 UV-B辐射对Asterarcys sp. SCSIO-44020脂肪酸组成的影响
Table 1. Effect of UV-B radiation on fatty acid composition of Asterarcys sp. SCSIO-44020
脂肪酸类型
Type of fatty acid相对百分含量 Relative percentage content/% 0 min 10 min 30 min 50 min 70 min 棕榈酸 C16:0 24.45±0.31a 24.18±0.08ab 23.64±0.14b 23.28±0.06b 22.57±0.00c 棕榈油酸 C16:1 1.79±0.02b 1.69±0.11b 1.87±0.02ab 2.03±0.02a 2.00±0.03a 硬脂酸 C18:0 3.87±0.03b 3.91±0.08b 4.09±0.03a 4.14±0.01a 3.76±0.05b 油酸 C18:1 35.29±0.22a 34.40±0.11b 33.53±0.06c 33.02±0.20c 30.99±0.24d 亚油酸 C18:2 16.42±0.01e 16.17±0.00d 17.24±0.02c 17.84±0.14b 19.43±0.03a 亚麻酸 C18:3 15.99±0.21bc 16.31±0.06b 16.24±0.01b 15.90±0.01c 18.01±0.17a 其他 Other 2.20±0.11b 3.34±0.06a 3.39±0.07a 3.78±0.41a 3.24±0.12a 饱和脂肪酸 SFAs 29.90±0.24a 29.77±0.02a 29.44±0.08a 29.06±0.05b 28.14±0.03c 单不饱和脂肪酸 MUFAs 37.68±0.21a 37.75±0.08a 37.08±0.09b 37.20±0.17ab 34.42±0.11c 多不饱和脂肪酸 PUFAs 32.41±0.03c 32.48±0.06c 33.48±0.01b 33.74±0.12b 37.44±0.15a 注:同行不同上标字母表示差异显著 (P<0.05)。 Note: Different superscript letters within the same line indicate significant differences (P<0.05). 表 2 UV-B辐射对Asterarcys sp. SCSIO-44020色素含量及产量的影响
Table 2. Effect of UV-B radiation on pigment content and yield of Asterarcys sp. SCSIO-44020
辐射处理时间
Radiation time/min叶绿素a质量分数
Chl a/%叶绿素a产量
Chl a yield/(mg·L−1)类胡萝卜素质量分数
Car/%类胡萝卜素产量
Car yield/(mg·L−1)w(Car)/w(Chla) 0 1.08±0.00b 63.45±0.20a 0.47±0.01a 27.85±0.37a 0.44±0.01ab 10 1.11±0.02b 64.38±1.04a 0.47±0.01a 27.37±0.73a 0.43±0.00b 30 1.13±0.00b 67.83±0.09a 0.49±0.01a 29.47±0.40a 0.43±0.01ab 50 1.11±0.07b 62.38±3.76a 0.52±0.03a 29.01±1.88a 0.46±0.00a 70 1.26±0.01a 61.59±0.44a 0.53±0.02a 26.19±1.01a 0.42±0.01b 注:同列不同上标字母表示差异显著 (P<0.05)。 Note: Different superscript letters within the same column indicate significant differences (P<0.05). -
[1] 魏静, 林莉, 潘雄, 等. 不同环境胁迫因子对藻类分子生物学特性的影响研究进展[J]. 长江科学院院报, 2020, 37(4): 14-24. doi: 10.11988/ckyyb.20190062 [2] RASTOGI R P, MADAMWAR D, NAKAMOTO H, et al. Resilience and self-regulation processes of microalgae under UV radiation stress[J]. J Photochem Photobiol C, 2020, 43: 100322. doi: 10.1016/j.jphotochemrev.2019.100322 [3] HÄDER D P, WILLIAMSON C E, WÄNGBERG S Å, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors[J]. Photochem Photobiol Sci, 2015, 14(1): 108-126. [4] EL-SHEEKH M M, ALWALEED E A, IBRAHIM A, et al. Detrimental effect of UV-B radiation on growth, photosynthetic pigments, metabolites and ultrastructure of some cyanobacteria and freshwater chlorophyta[J]. Int J Radiat Biol, 2021, 97(2): 265-275. doi: 10.1080/09553002.2021.1851060 [5] 缪锦来, 阚光锋, 李光友, 等. UV-B辐照培养下南极冰藻的形态和超微结构及主要生化组成的变化[J]. 中国海洋药物, 2003(6): 1-5. doi: 10.3969/j.issn.1002-3461.2003.06.001 [6] KURINJIMALAR C, KAVITHA G, THEVANATHAN R, et al. Impact of ultraviolet-B radiation on growth and biochemical composition of Botryococcus braunii Kutz.[J]. Curr Sci, 2019, 116(1): 89. doi: 10.18520/cs/v116/i1/89-95 [7] FUENTES-TRISTAN S, PARRA-SALDIVAR R, IQBAL H M N, et al. Bioinspired biomolecules: mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities[J]. J Photochem Photobiol B, 2019, 201: 111684. doi: 10.1016/j.jphotobiol.2019.111684 [8] SABER H, EL-SHEEKH M M, IBRAHIM A, et al. Effect of UV-B radiation on amino acids profile, antioxidant enzymes and lipid peroxidation of some cyanobacteria and green algae[J]. Int J Radiat Biol, 2020, 96(9): 1192-1206. doi: 10.1080/09553002.2020.1793025 [9] VARSHNEY P, BEARDALL J, BHATTACHARYA S, et al. Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide[J]. Algal Res, 2018, 30: 28-37. doi: 10.1016/j.algal.2017.12.006 [10] SINGH D P, KHATTAR J S, RAJPUT A, et al. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions[J]. PLoS One, 2019, 14(9): e0221930. doi: 10.1371/journal.pone.0221930 [11] LI T, YANG F F, XU J, et al. Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions[J]. Algal Res, 2020, 45: 101753. doi: 10.1016/j.algal.2019.101753 [12] HONG J W, KIM S, CHANG J W, et al. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential[J]. Algae, 2012, 27(3): 197-203. doi: 10.4490/algae.2012.27.3.197 [13] 卫华宁, 王灵, 李涛, 等. 不同氮源及氮浓度对海水驯化藻株Asterarcys sp. 生长及生化组成的影响[J]. 生物技术通报, 2021, 37(10): 34-44. [14] KHOZIN-GOLDBERG I, SHRESTHA P, COHEN Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2005, 1738(1/2/3): 63-71. [15] LI T, XU J, GAO B Y, et al. Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies[J]. Algal Res, 2016, 16: 481-491. doi: 10.1016/j.algal.2016.04.008 [16] LI T, WAN L L, LI A F, et al. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations[J]. Chin J Oceanol Limnol, 2013, 31(6): 1306-1314. doi: 10.1007/s00343-013-2316-7 [17] 李嘉颖, 李涛, 谭丽, 等. 盐度对一株淡水栅藻Scenedesmus sp. 生长及生化组成的影响[J]. 生物技术通报, 2017, 33(7): 155-161. [18] 吴燕燕, 张婉, 李来好, 等. 海萝藻中类菌胞素氨基酸的种类分析及抗氧化性能[J]. 中国食品学报, 2018, 18(5): 264-272. doi: 10.16429/j.1009-7848.2018.05.032 [19] CHANDRA R, PONS-FAUDOA F P, SALDÍVAR R P, et al. Effect of ultra-violet exposure on production of mycosporine-like amino acids and lipids by Lyngbya purpurem[J]. Biomass Bioenerg, 2020, 134: 105475. doi: 10.1016/j.biombioe.2020.105475 [20] SINGH G, BABELE P K, SINHA R P, et al. Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species[J]. Process Biochem, 2013, 48(5/6): 796-802. doi: 10.1016/j.procbio.2013.04.022 [21] SINGH A, TYAGI M B, KUMAR A. Cyanobacteria growing on tree barks possess high amount of sunscreen compound mycosporine-like amino acids (MAAs)[J]. Plant Physiol Biochem, 2017, 119: 110-120. doi: 10.1016/j.plaphy.2017.08.020 [22] SHEN S G, GUO R J, YAN R R, et al. Comparative proteomic analysis of Nostoc flagelliforme reveals the difference in adaptive mechanism in response to different ultraviolet-B radiation treatments[J]. Mol Biol Rep, 2018, 45(6): 1995-2006. doi: 10.1007/s11033-018-4355-9 [23] XUE L G, ZHANG Y, ZHANG T G, et al. Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria[J]. Crit Rev Microbiol, 2005, 31(2): 79-89. doi: 10.1080/10408410590921727 [24] LAURION I, ROY S. Growth and photoprotection in three dinoflagellates (including two strains of Alexandrium tamarense) and one diatom exposed to four weeks of natural and enhanced UVB radiation[J]. J Phycol, 2009, 45(1): 16-33. doi: 10.1111/j.1529-8817.2008.00618.x [25] 孙小琴, 孙昕, 李鹏飞, 等. 紫外辐射对小球藻光合性能及油脂积累的影响[J]. 中国油脂, 2019, 44(12): 114-119. [26] CHEN H, HUANG K X, LIU S S, et al. Effects of ultraviolet (UV) radiation on outdoor-and indoor-cultured Prorocentrum lima, a toxic benthic dinoflagellate[J]. J Ocean Univ, 2021, 20(3): 619-628. doi: 10.1007/s11802-021-4560-3 [27] 屠燕萍, 俞泓伶, 谢志浩. 三角褐指藻和小角毛藻对UV-B辐射增强的生理生化响应[J]. 生态科学, 2013, 32(4): 474-479. [28] FU S M, XUE S, CHEN J, et al. Effects of different short-term UV-B radiation intensities on metabolic characteristics of Porphyra haitanensis[J]. Int J Mol Sci, 2021, 22(4): 2180. doi: 10.3390/ijms22042180 [29] NOAMAN N H, AKL F, ABDEL-KAREEM M S M, et al. Effect of Ultraviolet-B irradiation on fatty acids, amino acids, protein contents, enzyme activities and ultrastructure of some algae[J]. Eur J Phycol, 2013, 14(1): 67-101. [30] 王静, 郭照冰, 王瑾瑾, 等. UV-B对紫球藻生长抑制及生理特性的影响[J]. 水生态学杂志, 2018, 39(6): 114-120. doi: 10.15928/j.1674-3075.2018.06.017 [31] GONZALEZ-SILVERA D, PÉREZ S, KORBEE N, et al. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta)[J]. J Phycol, 2017, 53(5): 999-1009. doi: 10.1111/jpy.12560 [32] NAVARRO N P, MANSILLA A, FIGUEROA F L, et al. Short-term effects of solar UV radiation and NO3 − supply on the accumulation of mycosporine-like amino acids in Pyropia columbina (Bangiales, Rhodophyta) under spring ozone depletion in the sub-Antarctic region, Chile[J]. Bot Marina, 2014, 57(1): 9-20. doi: 10.1515/bot-2013-0090 [33] RASTOGI R P, INCHAROENSAKDI A. UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551[J]. Plant Physiol Biochem, 2013, 70: 7-13. doi: 10.1016/j.plaphy.2013.04.021 [34] DIEHL N, MICHALIK D, ZUCCARELLO G C, et al. Stress metabolite pattern in the eulittoral red alga Pyropia plicata (Bangiales) in New Zealand-mycosporine-like amino acids and heterosides[J]. J Exp Mar Biol Ecol, 2019, 510: 23-30. doi: 10.1016/j.jembe.2018.10.002 [35] 张英莲. UV-B辐射对华南沿海常见赤潮藻类生长和类菌孢素氨基酸 (MAAs) 含量的影响[D]. 广州: 华南师范大学, 2007: 26-33. [36] 王婉如, 张昺林, 张楠, 等. 蓝藻对UV-B增强的响应及其紫外屏蔽物质的研究[J]. 天然产物研究与开发, 2012, 24(9): 1303-1311, 1329. doi: 10.3969/j.issn.1001-6880.2012.09.034 [37] NASSOUR R, AYASH A. Effects of ultraviolet-B radiation in plant physiology[J]. Agric (Pol'nohospodárstvo), 2021, 67(1): 1-15. [38] van den ENDE W, VALLURU R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging?[J]. J Exp Bot, 2009, 60(1): 9-18. [39] DEMIR E, KOCAOĞLU S, KAYA B. Protective effects of chlorophyll against the genotoxicity of UVB in Drosophila smart assay[J]. Fresenius Environ Bull, 2008, 17(12): 2180-2186. [40] SHEN S G, JIA S R, YAN R R, et al. The physiological responses of terrestrial cyanobacterium Nostoc flagelliforme to different intensities of ultraviolet-B radiation[J]. RSC Adv, 2018, 8(38): 21065-21074. doi: 10.1039/C8RA04024A [41] 涂勃. 阳光UV辐射对铜绿微囊藻生理生化特性影响的研究[D]. 武汉: 湖北工业大学, 2018: 5-6. -