Spatio-temporal distribution of habitat patterns of Scomber japonicus in East China Sea under future climatic conditions
-
摘要: 为探讨全球气候变化对东海鲐鱼 (Scomber japonicus) 栖息地时空分布的影响,减缓气候变化对鲐鱼渔场的不利影响,基于CMIP6气候模式输出的2.5 m (Temp_2.5 m)、25 m (Temp_25 m) 和50 m (Temp_50 m) 水温数据分析3种未来气候情境下 (SSP126、SSP370和SSP585) 东海鲐鱼栖息地的时空变化。结果表明,SSP126情境下,2015—2100年渔场内所有水层温度整体变化幅度较小。SSP370和SSP585情境下,各水层温度均明显上升。3个水层温度在2015—2020、2055—2060和2095—2100年具有明显空间变化。2015—2100年东海鲐鱼渔场的栖息地指数 (Habitat suitability index, HSI) 和适宜栖息地面积比例在SSP126、SSP370和SSP585情境下整体呈下降趋势,而不适宜栖息地面积呈上升趋势。不同气候变化情境下,东海鲐鱼适宜栖息地在2015—2020、2055—2060和2095—2100年3个时间段内主要分布在122°E—126°E、28°N—30°N范围内,不适宜栖息地主要分布在渔场中部;此外,鲐鱼适宜栖息地重心具有向北移动的趋势。研究表明,在未来全球变暖的气候背景下东海海域不易形成适宜的鲐鱼栖息地。Abstract: To investigate the effects of global climate change on the habitat pattern of Scomber japonicus in the East China Sea and to slow down the adverse effects of climate change on the fishing ground of S. japonicus, based on the water temperature data of 2.5 m (Temp_2.5 m), 25 m (Temp_25 m) and 50 m (Temp_50 m) output by CMIP6 climate model, we analyzed the spatio-temporal changes of the habitat in the East China Sea under three future climatic conditions (SSP126, SSP370 and SSP585). The results show that for SSP126, Temp_2.5 m, Temp_25 m and Temp_50 m showed relatively minor changes. For SSP370 and SSP585, Temp_2.5 m, Temp_25 m and Temp_50 m showed an overall upward trend. The three factors also changed in the spatial distribution during 2015−2020, 2055−2060 and 2095−2100. The habitat suitability index (HSI) on the fishing ground and proportion of suitable habitat of S. japonicus in the East China Sea from 2015 to 2100 showed a similar downward trend under SSP126, SSP370 and SSP585 conditions. However, the proportion of unsuitable habitat area from 2015 to 2100 increased under SSP126, SSP370 and SSP585 conditions. The suitable habitats of S. japonicus were mainly distributed in the waters of 122°E−126°E and 28°N−30°N during 2015−2020, 2055−2060 and 2095−2100, while the unsuitable habitat was mainly distributed in the middle of fishing ground. In addition, the gravity center of suitable habitat of S. japonicus tended to move northward. The results suggest that the global warming is unfavorable for the formation of suitable habitat of S. japonicus in the East China Sea.
-
表 1 不同气候情境的不同时间段内东海鲐鱼正常与不适宜栖息地面积变化
Table 1. Changes of normal and unsuitable habitat area of S. japonicus in East China Sea in different time periods under different climatic conditions
模态
SSP年份
Year渔场正常栖息地面积
HS/%面积增减
ID_HS/%渔场不适宜栖息地面积
UNSH/%面积增减
ID_UNSH/%SSP126 2015—2020 24.38 — 32.80 — 2055—2060 21.70 −10.99 35.48 +8.17 2095—2100 21.33 −12.51 35.84 +9.27 SSP370 2015—2020 24.07 — 33.11 — 2055—2060 19.48 −19.07 37.70 +13.86 2095—2100 11.39 −52.68 45.79 +38.29 SSP585 2015—2020 24.18 — 32.99 — 2055—2060 18.16 −24.89 39.02 +18.28 2095—2100 7.45 −69.19 49.73 +50.74 注:HS代表渔场正常栖息地面积;ID_SH代表2055—2060和2095—2100年渔场正常栖息地面积相对于2015—2020年正常栖息地面积的增减;UNSH代表渔场不适宜栖息地面积;ID_UNSH代表2055—2060和2095—2100年渔场不适宜栖息地面积相对于2015—2020年不适宜栖息地面积的增减。 Note: HS represents the area of normal habitat of fishing ground; ID_SH represents the increase or decrease of the normal habitat area of the fishing ground during 2055–2060 and 2095–2100 compared with the normal habitat area during 2015–2020; UNSH represents the area of unsuitable habitat of fishing ground; ID_UNSH represents the increase or decrease of the area of unsuitable habitat of fishing ground during 2055–2060 and 2095–2100 compared with that during 2015–2020. -
[1] 李曰嵩, 邢宇娜, 潘灵芝, 等. 鲐鱼生活史及模型应用研究进展[J]. 大连海洋大学学报, 2021, 36(4): 694-705. doi: 10.16535/j.cnki.dlhyxb.2020-227 [2] 刘雅丹. 浅谈气候变化对渔业和水产养殖的影响[J]. 中国水产, 2022(1): 68-71. [3] GENNER M J, SIMS D W, WEARMOUTH V J, et al. Regional climatic warming drives long-term community changes of British marine fish[J]. Proc R Soc B, 2004, 271(1539): 655-661. doi: 10.1098/rspb.2003.2651 [4] PERRY A L, LOW P J, ELLIS J R, et al. Climate change and distribution shifts in marine fishes[J]. Science, 2005, 308(5730): 1912-1915. doi: 10.1126/science.1111322 [5] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划 (CMIP6) 评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. [6] KIPARISSIS S, TSERPES G, TSIMENIDIS N. Aspects on the demography of chub mackerel (Scomber japonicus Houttuyn, 1782) in the Hellenic Seas[J]. Belg J Zool. 2000, 130: 5-9. [7] 范秀梅, 杨胜龙, 张胜茂, 等. 基于栖息地指数的阿拉伯海鲐鱼渔情预报模型构建[J]. 南方水产科学, 2020, 16(4): 8-17. doi: 10.12131/20190255 [8] 李纲, 陈新军. 东海鲐鱼资源和渔场时空分布特征的研究[J]. 中国海洋大学学报 (自然科学版), 2007(6): 921-926. [9] 郭爱, 余为, 陈新军, 等. 中国近海鲐鱼资源时空分布与海洋净初级生产力的关系研究[J]. 海洋学报, 2018, 40(8): 42-52. [10] 李宜锴, 方星楠, 余为, 等. 2005—2016年中国东海鲐鱼渔场的时空分布及与海表面温度的关联[J]. 上海海洋大学学报, 2022, 31(3): 710-720. doi: 10.12024/jsou.20210503429 [11] 郭爱. 气候与海洋环境变化对东黄海鲐鱼栖息地时空变动的影响[D]. 上海: 上海海洋大学, 2020: 2-4. [12] 杨胜龙, 范秀梅, 伍玉梅, 等. 基于GAM模型的阿拉伯海鲐鱼渔场分布与环境关系[J]. 生态学杂志, 2019, 38(8): 2466-2470. doi: 10.13292/j.1000-4890.201908.032 [13] 李曰嵩. 东海鲐鱼 (Scomber japonica) 早期生活史过程的生态动力学模拟研究[D]. 上海: 上海海洋大学, 2012: 41-42. [14] YU W, WEN J, CHEN X J, et al. Effects of climate variability on habitat range and distribution of chub mackerel in the East China Sea[J]. J Ocean Univ China, 2021, 20(6): 1483-1494. doi: 10.1007/s11802-021-4760-x [15] 刘红红, 朱玉贵. 气候变化对海洋渔业的影响与对策研究[J]. 现代农业科技, 2019(10): 244-247. doi: 10.3969/j.issn.1007-5739.2019.10.149 [16] CHEUNG W W L, LAM V W Y, SARMIENTO J L, et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change[J]. Glob Chang Biol, 2010, 16(1): 24-35. doi: 10.1111/j.1365-2486.2009.01995.x [17] 苏杭, 陈新军, 汪金涛. 海表水温变动对东、黄海鲐鱼栖息地分布的影响[J]. 海洋学报, 2015, 37(6): 88-96. [18] 张孝威. 鲐鱼[M]. 北京: 农业出版社, 1983: 42-46. [19] SHULTZ A D, ZUCKERMAN Z C, TEWART H A, et al. Seasonal blood chemistry response of sub-tropical nearshore fishes to climate change[J]. Conserv Physiol, 2014, 2(1): 1-12. [20] YASUDA T, NAGANO N, KITANO H. Diel vertical migration of chub mackerel: preliminary evidence from a biologging study[J]. Mar Ecol Prog Ser, 2018, 598: 147-151. doi: 10.3354/meps12636 [21] CHEN, X J, TIAN S Q, GUAN W J. Variations of oceanic fronts and their influence on the fishing grounds of Ommastrephes bartramii in the Northwest Pacific[J]. Acta Oceanol Sin, 2014, 33(4): 45-54. doi: 10.1007/s13131-014-0452-3 [22] 易炜, 郭爱, 陈新军. 不同环境因子权重对东海鲐鱼栖息地模型的影响研究[J]. 海洋学报, 2017, 39(12): 90-97. [23] 宋利明, 许回, 陈明锐. 毛里塔尼亚海域日本鲭时空分布与海洋环境的关系[J]. 上海海洋大学学报, 2020, 29(6): 868-877. doi: 10.12024/jsou.20190702746 [24] 官文江, 陈新军, 高峰, 等. 海洋环境对东、黄海鲐鱼灯光围网捕捞效率的影响[J]. 中国水产科学, 2009, 16(6): 949-958. doi: 10.3321/j.issn:1005-8737.2009.06.016 [25] 王子鸣. 基于气候变化分析对海洋的影响[J]. 湖北农机化, 2020(5): 25. [26] 何越. 全球变暖背景下热带太平洋及中国近海气候变化动力降尺度预估[D]. 厦门: 厦门大学, 2017: 64-65. [27] STOUFFER R J, BROCCOLI A J, DELWORTH T L, et al. GFDL's CM2 Global Coupled Climate Models. Part IV: idealized climate response[J]. J Clim, 2015, 19(5): 723-740. [28] LEE H C. Impact of atmospheric CO2 doubling on the North Pacific subtropical mode water[J]. Geophys Res Lett, 2009, 36(6): 295-311. [29] 官文江. 基于海洋遥感的东、黄海鲐鱼渔场与资源研究[D]. 上海: 华东师范大学, 2008: 14-15. [30] 马超, 庄之栋, 刘勇, 等. 西北太平洋公海灯光敷网渔获组成及主要种类渔业生物学特征研究[J]. 渔业研究, 2018, 40(2): 141-147. [31] SASSA C, KAWAGUCHI K, TAKI K. Larval mesopelagic fish assemblages in the Kuroshio-Oyashio transition region of the western North Pacific[J]. Mar Biol, 2007, 150(6): 1403-1415. doi: 10.1007/s00227-006-0434-x [32] YATSU A, SASSA C, MOKU M, et al. Night-time vertical distribution and abundance of small epipelagic and mesopelagic fishes in the upper 100 m layer of the Kuroshio-Oyashio Transition Zone in spring[J]. Fish Sci, 2005, 71(6): 1280-1286. doi: 10.1111/j.1444-2906.2005.01094.x [33] TIAN Y, UENO Y, SUDA M, et al. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century[J]. J Mar Syst, 2004, 52: 235-257. doi: 10.1016/j.jmarsys.2004.04.004 [34] DING X, HU B, LI J, et al. Late Holocene Orbital forcing and solar activity on the Kuroshio Current of subtropical North Pacific at different timescales[J]. Front Earth Sci, 2022, 10: 1-11. [35] 龚彩霞. 未来气候变化情景下西北太平洋柔鱼资源变动[D]. 上海: 上海海洋大学, 2020: 69-70. -