留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响

贾慧凝 侍苗苗 卞永乐 侍崇敬 刘恒蔚 宋学宏 秦粉菊

贾慧凝, 侍苗苗, 卞永乐, 侍崇敬, 刘恒蔚, 宋学宏, 秦粉菊. 纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响[J]. 南方水产科学. doi: 10.12131/20220106
引用本文: 贾慧凝, 侍苗苗, 卞永乐, 侍崇敬, 刘恒蔚, 宋学宏, 秦粉菊. 纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响[J]. 南方水产科学. doi: 10.12131/20220106
JIA Huining, SHI Miaomiao, BIAN Yongle, SHI Chongjing, LIU Hengwei, SONG Xuehong, QIN Fenju. Effects of nanometer selenium on the immune protection and antioxidant ability of Eriocheir sinensis under hypoxia stress[J]. South China Fisheries Science. doi: 10.12131/20220106
Citation: JIA Huining, SHI Miaomiao, BIAN Yongle, SHI Chongjing, LIU Hengwei, SONG Xuehong, QIN Fenju. Effects of nanometer selenium on the immune protection and antioxidant ability of Eriocheir sinensis under hypoxia stress[J]. South China Fisheries Science. doi: 10.12131/20220106

纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响

doi: 10.12131/20220106
基金项目: 国家自然科学基金 (31772896);苏州市科技计划项目 (SNG2017055)
详细信息
    作者简介:

    贾慧凝 (1998—),女,硕士研究生,专业方向为环境生物技术。E-mail: jiahuining_a@163.com

    通讯作者:

    秦粉菊 (1976—),女,教授,博士,从事环境毒理学和纳米营养学研究。E-mail: qinfenju@mail.usts.edu.cn

  • 中图分类号: S 963.73+4

Effects of nanometer selenium on the immune protection and antioxidant ability of Eriocheir sinensis under hypoxia stress

  • 摘要: 为探究纳米硒 (nano-Se) 对低氧胁迫下中华绒螯蟹 (Eriocheir sinensis) 免疫保护和抗氧化能力的影响,该研究在基础饲料中添加不同水平 (0、0.1、0.2、0.4、0.8和1.6 mg·kg−1) 的纳米硒饲喂中华绒螯蟹90 d。饲喂实验结束后,进行低氧胁迫实验并注射嗜水气单胞菌 (Aeromonas hydrophila)。实验结果表明:1) 低氧胁迫24 h和低氧胁迫下感染嗜水气单胞菌24 h的蟹死亡率分别可达62.45%和100%,低氧胁迫12 h使血淋巴中血蓝蛋白含量、血细胞数量、组织中超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)、谷胱甘肽过氧化物酶 (GSH-Px) 活性显著升高 (P<0.05),胁迫至24 h有下降趋势;乳酸 (LD) 和丙二醛 (MDA) 含量在低氧胁迫12~24 h持续上升。2) 饲料中添加适量 (0.1~0.4 mg·kg−1) 纳米硒可显著缓解低氧胁迫下蟹死亡率和低氧胁迫下嗜水气单胞菌的致蟹死亡率 (P<0.05),显著提高低氧胁迫下血蓝蛋白含量和血细胞数量以及抗氧化酶 (SOD、CAT、GSH-Px) 活性,降低LD和MDA含量 (P<0.05);添加0.8~1.6 mg·kg−1水平纳米硒加剧了低氧胁迫损伤。结果表明饲料中添加适量纳米硒可改善低氧胁迫下中华绒螯蟹的免疫功能和抗氧化能力,且添加水平以0.2 mg·kg−1为宜。
  • 图  1  纳米硒对低氧胁迫下中华绒螯蟹血淋巴耐低氧指标的影响

    不同英文字母表示相同低氧胁迫时间下显著差异 (P<0.05);*. 与对照组差异显著 (P<0.05);后图同此

    Figure  1.  Effects of nano-Se on hemolymph hypoxia tolerance indexes of E. sinensis under hypoxia stress

    Different lowercase letters indicate significant difference at the same hypoxia stress time (P<0.05); *. Significant difference compared with the control group (P<0.05); the same case in the following figures.

    图  2  纳米硒对低氧胁迫下中华绒螯蟹血淋巴血细胞数量的影响

    Figure  2.  Effects of nano-Se on hemolymph hemocyte count of E. sinensis under hypoxia stress

    图  3  纳米硒对低氧胁迫下中华绒螯蟹不同组织中超氧化物歧化酶活性的影响

    Figure  3.  Effects of nano-Se on SOD activity in different tissues of E. sinensis under hypoxia stress

    图  4  纳米硒对低氧胁迫下中华绒螯蟹不同组织中过氧化氢酶活性的影响

    Figure  4.  Effects of nano-Se on CAT activity in different tissues of E. sinensis under hypoxia stress

    图  5  纳米硒对低氧胁迫下中华绒螯蟹不同组织中谷胱甘肽过氧化物酶活性的影响

    Figure  5.  Effects of nano-Se on GSH-Px activity in different tissues of E. sinensis under hypoxia stress

    图  6  纳米硒对低氧胁迫下中华绒螯蟹不同组织中丙二醛含量的影响

    Figure  6.  Effects of nano-Se on MDA content in different tissues of E. sinensis under hypoxia stress

    表  1  基础饲料配方组成

    Table  1.   Ingredients of composition of basal diets

    原料 Ingredient含量 Content/%
    鱼粉 Fish meal 17
    棉粕 Cotton seed meal 17
    菜粕 Rape seed meal 16
    次粉 Wheat flour 10.5
    豆粕 Soybean meal 10
    玉米 Corn 9
    米糠 Rice bran 5
    粘合剂 Adhesive 1
    血粉 Blood meal 3
    虾壳粉 Shrimp shell meal 3
    豆油+菜油 (1:1) Soybean oil+ Rapeseed oil 2
    磷酸二氢钙 Ca(H2PO4)2 1.5
    沸石粉 Zeolite powder 2
    河蟹饲料添加剂 Crab feed additive 1
    蟹用多维a Crab vit premix 1
    蟹用多矿b Crab min premix 1
    注:a. 每100 g蟹用多维预混料中含:2.0 g维生素E、3.0 g维生素C、0.6 g维生素A、0.08 g维生素D3、0.07 g维生素B1、0.14 g维生素B2、0.28 g维生素B3、0.01 g维生素B5、0.08 g维生素B6、0.05 g维生素B7、0.02 g维生素B11、0.04 g维生素H、0.3 g烟酸、0.05 g叶酸、0.5 g氯化胆碱、0.25 g泛酸钙、0.05 g生物素、0.7 g肌醇;b. 每100 g蟹用多矿预混料中含:3.5 g磷酸二氢钠、6.0 g磷酸二氢钾、3.5 g碳酸钙、0.6 g氯化钾、3.2 g七水合硫酸镁、0.55 g六水合氯化铝、0.157 g七水合硫酸锌、0.019 g柠檬酸铁、0.043 g四水合硫酸锰、0.016 g碘化钾、0.014 g氯化铜、0.055 g六水合氯化钴、5.15 g乳酸钙。 Note: a. Per 100g of crab multidimensional premix contains: 2.0 g VE, 3.0 g VC, 0.6 g VA, 0.08 g VD3, 0.07 g VB1, 0.14 g VB2, 0.28 g VB3, 0.01 g VB5, 0.08 g VB6, 0.05 g VB7, 0.02 g VB11, 0.04 g VH, 0.3 g niacin, 0.05 g folic acid, 0.5 g choline chloride, 0.25 g calcium pantothenate, 0.05 g biotin, 0.7 g inositol; b. The crab min premix provided following for per 100 g: 3.5 g NaH2PO4, 6.0 g KH2PO4, 3.5 g CaCO3, 0.6 g KCl, 3.2 g MgSO4·7H2O, 0.55 g AlCl3·6H2O, 0.157 g ZnSO4·7H2O, 0.019 g FeC6H5O7, 0.043 g MnSO4·4H2O, 0.016 g KI, 0.014 g CuCl2, 0.055 g CoCl2·6H2O, 5.15 g C6H10CaO6.
    下载: 导出CSV

    表  2  纳米硒对低氧胁迫下中华绒螯蟹死亡率的影响 (`X±SE, N=10)

    Table  2.   Effects of nano-Se on mortality rate of E. sinensis under hypoxia stress

    纳米硒添加水平
    Level of nano-Se/(mg·kg−1)
    死亡率
    Mortality rate/%
    免疫保护率
    Immune protection rate/%
    0 h12 h24 h 12 h24 h
    0 0 12.66±3.33c 62.45±8.57c*
    0.1 0 6.25±1.50b 44.39±4.88b 50.63 28.92
    0.2 0 2.50±0.30a 25.62±3.33a 80.25 58.98
    0.4 0 12.34±2.05c 31.55±3.29b 2.53 49.48
    0.8 0 19.36±2.67d 62.66±6.32c −52.92 −0.34
    1.6 0 20.25±5.55d 87.73±10.34d −59.95 −40.48
    注:同列不同上标字母表示差异显著 (P<0.05),*. 与对照组 (0 mg·kg−1纳米硒低氧胁迫0 h组) 差异显著 (P<0.05);—. 无数据;后表同此。 Note: Different superscript letters within the same column indicate significant difference (P<0.05); *. Significant difference compared with the control group (0 mg·kg−1 nano-Se group under hypoxia stress for 0 h) (P<0.05); —. No data. The same case in the following tables.
    下载: 导出CSV

    表  3  纳米硒对低氧胁迫下嗜水气单胞菌致死率的影响 (`X±SE, N=10)

    Table  3.   Effects of nano-Se on lethality of A. hydrophila under hypoxia stress

    纳米硒添加水平
    Level of nano-Se/(mg·kg−1)
    嗜水气单胞菌致死率
    Lethality of A. hydrophila/%
    免疫保护率
    Immune protection rate/%
    0 h12 h24 h 12 h24 h
    0 0 50.36±6.72c* 100±0c*
    0.1 0 25.22±3.51b 87.47±5.95b 49.92 12.53
    0.2 0 12.48±2.39a 56.82±7.31a 75.22 43.18
    0.4 0 25.78±3.64b 81.43±2.5b 48.81 18.57
    0.8 0 50.33±4.52c 100±0c 0.06 0
    1.6 0 75.29±6.15d 100±0c −49.5 0
    下载: 导出CSV
  • [1] BAO J, LI X D, XING Y N, et al. Effects of hypoxia on immune responses and carbohydrate metabolism in the Chinese mitten crab, Eriocheir sinensis[J]. Aquac Res, 2020, 51(7): 2735-2744. doi: 10.1111/are.14612
    [2] QIU R J, CHENG Y X, HUANG X X, et al. Effect of hypoxia on immunological, physiological response, and hepatopancreatic metabolism of juvenile Chinese mitten crab Eriocheir sinensis[J]. Aquac Int, 2011, 19(2): 283-299. doi: 10.1007/s10499-010-9390-z
    [3] GUO K, ZHAO Z G, LUO L, et al. Immune and intestinal microbiota responses to aerial exposure stress in Chinese mitten crab (Eriocheir sinensis)[J]. Aquaculture, 2021, 541: 736833. doi: 10.1016/j.aquaculture.2021.736833
    [4] GRAVINESE P M. The tolerance of juvenile stone crabs to hypoxia: size matters[J]. J Exp Mar Biol Ecol, 2020, 523: 151269. doi: 10.1016/j.jembe.2019.151269
    [5] 阮雯, 纪炜炜, 郑亮, 等. 鱼类低氧胁迫及营养调控和应对研究进展[J]. 海洋渔业, 2020, 42(6): 751. doi: 10.3969/j.issn.1004-2490.2020.06.011
    [6] ADENIRAN S O, ZHENG P, FENG R, et al. The antioxidant role of selenium via GPx1 and GPx4 in LPS-induced oxidative stress in bovine endometrial cells[J]. Biol Trace Elem Res, 2022, 200(3): 1140-1155. doi: 10.1007/s12011-021-02731-0
    [7] NKENGFACK G. Selenium and immunity[M]//MAHMOUDI M. Nutrition and immunity. Cham: Springer, 2019: 159-165.https://doi.org/10.1007/978-3-030−16073-9_9.
    [8] YUAN L X, ZHANG R, MA X Z, et al. Selenium accumulation, antioxidant enzyme levels, and amino acids composition in Chinese mitten crab (Eriocheir sinensis) fed selenium-biofortified corn[J]. Nutrients, 2018, 10(3): 318. doi: 10.3390/nu10030318
    [9] WANG X D, SHEN Z H, WANG C L, et al. Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir Sinensis under nitrite stress[J]. Fish Shellfish Immunol, 2019, 87: 22-31. doi: 10.1016/j.fsi.2018.12.076
    [10] NEAMAT-ALLAH A N F, MAHMOUD E A, ABD EL HAKIM Y. Efficacy of dietary nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection[J]. Fish Shellfish Immunol, 2019, 94: 280-287. doi: 10.1016/j.fsi.2019.09.019
    [11] 侍苗苗, 秦粉菊, 袁林喜, 等. 纳米硒对中华绒螯蟹生长性能、硒含量和营养组成的影响[J]. 饲料工业, 2015, 36(10): 21-25. doi: 10.13302/j.cnki.fi.2015.10.006
    [12] 王璀红. 碘量法测定溶解氧[J]. 辽宁化工, 2012, 41(1): 107-108. doi: 10.3969/j.issn.1004-0935.2012.01.032
    [13] NICKERSON K W, van HOLDE K E. A comparison of molluscan and arthropod hemocyanin-I. Circular dichroism and absorption spectra[J]. Comp Biochem Phys B, 1971, 39(4): 855-872. doi: 10.1016/0305-0491(71)90109-X
    [14] 杨明, 孙盛明, 傅洪拓, 等. 低氧和复氧对日本沼虾抗氧化酶活力及组织结构的影响[J]. 中国水产科学, 2019, 26(3): 493-503.
    [15] 张静, 陈红莲, 鲍俊杰, 等. 水产养殖中嗜水气单胞菌拮抗菌的研究进展[J]. 江苏农业科学, 2020, 48(17): 21-33.
    [16] STRATEV D, ODEYEMI O A. An overview of motile Aeromonas septicaemia management[J]. Aquac Int, 2017, 25(3): 1095-1105. doi: 10.1007/s10499-016-0100-3
    [17] 谢丽玲, 赵水灵, 余飞, 等. 黄连素对3种水产动物致病菌的抑制作用研究[J]. 南方水产科学, 2013, 9(4): 45-49. doi: 10.3969/j.issn.2095-0780.2013.04.008
    [18] 程超, 肖敏, 李菁, 等. 嗜水气单胞菌刺激对中华绒螯蟹免疫的影响[J]. 水产科学, 2020, 39(4): 465-475.
    [19] KONG Y Q, DING Z L, ZHANG Y X, et al. Dietary selenium requirement of juvenile oriental river prawn Macrobrachium nipponense[J]. Aquaculture, 2017, 476: 72-78. doi: 10.1016/j.aquaculture.2017.04.010
    [20] HAUTON C. The scope of the crustacean immune system for disease control[J]. J Invertebr Pathol, 2012, 110(2): 251-260. doi: 10.1016/j.jip.2012.03.005
    [21] LIU S, ZHENG S C, LI Y L, et al. Hemocyte-mediated phagocytosis in crustaceans[J]. Front Immunol, 2020, 11: 268. doi: 10.3389/fimmu.2020.00268
    [22] MITTA G, VANDENBULCKE F, ROCH P. Original involvement of antimicrobial peptides in mussel innate immunity[J]. FEBS Lett, 2000, 486(3): 185-190. doi: 10.1016/S0014-5793(00)02192-X
    [23] 洪宇航, 杨筱珍, 成永旭, 等. 中华绒螯蟹的血细胞组成、分类及免疫学功能[J]. 水产学报, 2017, 41(8): 1213-1222.
    [24] SIVAKUMAR M R, DENIS M, SIVAKUMAR S, et al. Agglutination of plasma, hemocyanin, and separated hemocyanin from the hemolymph of the freshwater prawn Macrobrachium rosenbergii (de Man, 1879) (Decapoda: Caridea: Palaemonidae)[J]. J Crust Biol, 2020, 40(3): 309-315. doi: 10.1093/jcbiol/ruaa016
    [25] XU Z N, LIU A, LI S K, et al. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain[J]. Sci Rep, 2020, 10(1): 1-14. doi: 10.1038/s41598-019-56847-4
    [26] le MOULLAC G, SOYEZ C, SAULNIER D, et al. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris[J]. Fish Shellfish Immunol, 1998, 8(8): 621-629. doi: 10.1006/fsim.1998.0166
    [27] SONG Y M, WU M Y, PANG Y Y, et al. Effects of melatonin feed on the changes of hemolymph immune parameters, antioxidant capacity, and mitochondrial functions in Chinese mitten crab (Eriocheir sinensis) caused by acute hypoxia[J]. Aquaculture, 2021, 535: 736374. doi: 10.1016/j.aquaculture.2021.736374
    [28] WANG J, XU Z, HE J P. The role of HIF-1α in the energy metabolism and immune responses of hypoxic Scylla paramamosain[J]. Aquac Rep, 2021, 20: 100740. doi: 10.1016/j.aqrep.2021.100740
    [29] 李彦红, 张飞飞, 黄丽娟, 等. 纳米硒对齐口裂腹鱼生长、肌肉成分、血清生化及抗氧化指标的影响[J]. 中国水产科学, 2020, 27(6): 682-691.
    [30] LI Y H, WEI L, CAO J R, et al. Oxidative stress, DNA damage and antioxidant enzyme activities in the Pacific white shrimp (Litopenaeus vannamei) when exposed to hypoxia and reoxygenation[J]. Chemosphere, 2016, 144: 234-240. doi: 10.1016/j.chemosphere.2015.08.051
    [31] STOREY K B. Oxidative stress: animal adaptations in nature[J]. Braz J Med Biol Res, 1996, 29(12): 1715-1733.
    [32] LESSER M P. Oxidative stress in tropical marine ecosystems[M]//ABELE D. Oxidative stress in aquatic ecosystems. Chichester: John Wiley & Sons Ltd. , 2011: 7-19.
    [33] 虞为, 杨育凯, 林黑着, 等. 牛磺酸对花鲈生长性能、消化酶活性、抗氧化能力及免疫指标的影响[J]. 南方水产科学, 2021, 17(2): 78-86. doi: 10.12131/20200223
    [34] 曾祥兵, 董宏标, 韦政坤, 等. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2021, 17(4): 49-57. doi: 10.12131/20210028
    [35] NUGROHO R A, FOTEDAR R. Comparing the effects of dietary selenium and mannan oligosaccharide supplementation on the growth, immune function, and antioxidant enzyme activity in the cultured marron Cherax cainii (Austin, 2002)[J]. Aquac Int, 2014, 22(2): 585-596. doi: 10.1007/s10499-013-9682-1
    [36] LIU Z M, ZHU X L, LU J, et al. Effect of high temperature stress on heat shock protein expression and antioxidant enzyme activity of two morphs of the mud crab Scylla paramamosain[J]. Comp Biochem Phys A, 2018, 223: 10-17. doi: 10.1016/j.cbpa.2018.04.016
    [37] HONG Y H, HUANG Y, YAN G W, et al. Antioxidative status, immunological responses, and heat shock protein expression in hepatopancreas of Chinese mitten crab, Eriocheir sinensis under the exposure of glyphosate[J]. Fish Shellfish Immunol, 2019, 86: 840-845. doi: 10.1016/j.fsi.2018.12.020
    [38] 管敏, 张德志, 唐大明. 慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化、免疫指标的影响[J]. 南方水产科学, 2020, 16(2): 36-42. doi: 10.12131/20190191
    [39] 谭连杰, 林黑着, 黄忠, 等. 当归多糖对卵形鲳鲹生长性能、抗氧化能力、血清免疫和血清生化指标的影响[J]. 南方水产科学, 2018, 14(4): 72-79. doi: 10.3969/j.issn.2095-0780.2018.04.009
    [40] de OLIVEIRA U O, DA ROSA ARAÚJO A S, BELLÓ-KLEIN A, et al. Effects of environmental anoxia and different periods of reoxygenation on oxidative balance in gills of the estuarine crab Chasmagnathus granulata[J]. Comp Biochem Phys B, 2005, 140(1): 51-57. doi: 10.1016/j.cbpc.2004.09.026
    [41] 管越强, 李利, 王慧春, 等. 低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响[J]. 河北大学学报(自然科学版), 2010, 30(3): 301-306.
    [42] NAM S E, HAQUE M N, LEE J S, et al. Prolonged exposure to hypoxia inhibits the growth of Pacific abalone by modulating innate immunity and oxidative status[J]. Aquat Toxicol, 2020, 227: 105596. doi: 10.1016/j.aquatox.2020.105596
    [43] BUNDGAARD A, RUHR I M, FAGO A, et al. Metabolic adaptations to anoxia and reoxygenation: new lessons from freshwater turtles and crucian carp[J]. Curr Opin Endocr Metab Res, 2020, 11: 55-64. doi: 10.1016/j.coemr.2020.01.002
    [44] WANG H L, ZHANG J S, YU H Q. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice[J]. Free Radic Biol Med, 2007, 42(10): 1524-1533. doi: 10.1016/j.freeradbiomed.2007.02.013
    [45] 徐铭, 朱丹丹. 硒与动物免疫功能的关系[J]. 畜牧兽医科技信息, 2013(3): 16-17.
    [46] 赵亚伟, 汤加勇, 贾勇, 等. 不同硒源对肉鸡生长性能、血清和肌肉硒含量、抗氧化能力及肉品质的影响[J]. 动物营养学报, 2021, 33(4): 2024-2032. doi: 10.3969/j.issn.1006-267x.2021.04.022
    [47] BAI K K, HONG B H, HUANG W W, et al. Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: a chemical and in vivo investigation[J]. Pharmaceutics, 2020, 12(1): 43. doi: 10.3390/pharmaceutics12010043
    [48] 黄小红, 曹岩, 江俊勇, 等. 饲料中添加纳米硒对草鱼生长性能、免疫器官指数和抗氧化性能的影响[J]. 中国饲料, 2017(16): 30-34.
    [49] 农业部渔业渔政管理局. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 27-46.
  • 加载中
计量
  • 文章访问数:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-06-06
  • 录用日期:  2022-06-14
  • 网络出版日期:  2022-06-25

目录

    /

    返回文章
    返回