留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无乳链球菌感染对卵形鲳鲹脾脏的损伤及细胞凋亡相关基因表达的影响

高杰 郭华阳 刘明鉴 刘宝锁 朱克诚 张楠 郭梁 张殿昌

高杰, 郭华阳, 刘明鉴, 刘宝锁, 朱克诚, 张楠, 郭梁, 张殿昌. 无乳链球菌感染对卵形鲳鲹脾脏的损伤及细胞凋亡相关基因表达的影响[J]. 南方水产科学. doi: 10.12131/20220099
引用本文: 高杰, 郭华阳, 刘明鉴, 刘宝锁, 朱克诚, 张楠, 郭梁, 张殿昌. 无乳链球菌感染对卵形鲳鲹脾脏的损伤及细胞凋亡相关基因表达的影响[J]. 南方水产科学. doi: 10.12131/20220099
GAO Jie, GUO Huayang, LIU Mingjian, LIU Baosuo, ZHU Kecheng, ZHANG Nan, GUO Liang, ZHANG Dianchang. Response of caspase genes to Streptococcus agalactiae in cells of spleen of golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science. doi: 10.12131/20220099
Citation: GAO Jie, GUO Huayang, LIU Mingjian, LIU Baosuo, ZHU Kecheng, ZHANG Nan, GUO Liang, ZHANG Dianchang. Response of caspase genes to Streptococcus agalactiae in cells of spleen of golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science. doi: 10.12131/20220099

无乳链球菌感染对卵形鲳鲹脾脏的损伤及细胞凋亡相关基因表达的影响

doi: 10.12131/20220099
基金项目: 国家自然科学基金项目 (U20A2064);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021SD12);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助 (2022TD29)
详细信息
    作者简介:

    高杰:高 杰 (1996—),男,硕士研究生,研究方向为水产遗传育种。E-mail: gjie1996@126.com

    通讯作者:

    张殿昌 (1977—),男,研究员,博士,从事水产种质资源与遗传育种研究。E-mail: zhangdch@scsfri.ac.cn

  • 中图分类号: S 941.42+9

Response of caspase genes to Streptococcus agalactiae in cells of spleen of golden pompano (Trachinotus ovatus)

  • 摘要: 为了探究卵形鲳鲹 (Trachinotus ovatus) 感染无乳链球菌 (Streptococcus agalactiae) 后脾脏的应答机制,对卵形鲳鲹人工感染无乳链球菌后脾脏组织进行了病理学观察,检测了感染前后鱼体血液常规指标及感染后不同时间 (第0、第6、第12、第24、第48、第72、第96和第120小时) 血清乳酸脱氢酶 (LDH) 以及脾脏碱性磷酸酶 (ALP)、酸性磷酸酶 (ACP) 的变化趋势,并对Caspase-3、Caspase-8和Caspase-9基因进行定量分析。结果显示,卵形鲳鲹经无乳链球菌人工感染后其机体出现明显病变,主要表现为眼睛突出、浑浊并伴有出血;组织病理学观察发现脾脏组织产生了炎症病变;较对照组而言,感染组血液中红细胞数量 (RBC)、血红蛋白浓度 (HGB) 和红细胞比容 (HCT) 明显降低,白细胞 (WBC)、嗜中性粒细胞 (NE)、淋巴细胞 (LYM) 数量升高,平均红细胞体积 (MCV) 增大;血清LDH和脾脏ALP、ACP活性随时间延长均上调;脾脏中Caspase-3、Caspase-8和Caspase-9表达量均显著上调。结果表明卵形鲳鲹受无乳链球菌感染后其机体产生了明显免疫反应。
  • 图  1  卵形鲳鲹感染无乳链球菌后内部和外部病变

    Figure  1.  Internal and external lesions recorded on T. ovatus specimens affected by S. agalactia

    图  2  卵形鲳鲹脾脏组织病理学特征

    Figure  2.  Histopathological on spleen of T. ovatus

    图  3  感染不同时间后生化指标变化

    Figure  3.  Changes of biochemical indexes after infection at different time

    图  4  卵形鲳鲹感染无乳链球菌后脾脏凋亡基因相对表达量

    Figure  4.  Relative expression of apoptosis genes in spleen after T. ovatus infection with S. agalactiae

    表  1  引物信息及序列

    Table  1.   Primer and sequences information applied in this study

    引物名称
    Primer name
    引物序列 (5'—3')
    Primer sequences (5'—3')
    目标
    Amplification target
    Caspase-3-F GCTGCTCTACTGCTTCTGCCTG
    ATG
    qRT-PCR
    Caspase-3-R TGGCTGAGGATTGTGATGTTGC
    TG
    Caspase-8-F GCAACAAAACAGCCATCCA qRT-PCR
    Caspase-8-R GCAGGGGTAAAGGGTCATT
    Caspase-9-F GAATGGCGTCCGTCTGGTCATC qRT-PCR
    Caspase-9-R GGCAGCACGTCTCAGTTCAGC
    EF-1α-F AAGCCAGGTATGGTTGTCAACT
    TT
    qRT-PCR
    EF-1α-R CGTGGTGCATCTCCACAGACT
    下载: 导出CSV

    表  2  卵形鲳鲹感染无乳链球菌对血液学指标的影响 ($\overline {\boldsymbol X}{\bf {\pm} } {\bf{SD}} $)

    Table  2.   S. agalactiae infection on the hematological parameters of T. ovatus

    项目
    Inspection item
    对照组
    Healthy
    感染组
    Infected
    白细胞数量 WBC/(109·L−1) 8.32±0.94 13.67±0.58*
    嗜中性粒细胞数量 NE/(109·L−1) 0.18±0.09 0.54±0.12*
    淋巴细胞数量 LYM/(109·L−1) 1.01±0.35 3.04±0.75*
    红细胞数量 RBC/(109·L−1) 5.25±1.07 3.08±0.25*
    血红蛋白浓度 HGB/(g·L−1) 179.67±10.25 129.58±9.58*
    红细胞比容 HCT/% 35.69±0.55 23.37±0.17*
    平均红细胞体积 MCV/fL 160.63±1.27 190.31±0.79*
    平均红细胞血红蛋白含量
    MCH/pg
    39.75±2.47 41.11±3.73
    平均红细胞血红蛋白质量浓度
    MCHC/(g·L−1)
    289.21±2.99 292.36±4.13
    血小板数量 PLT/(109·L−1) 19.68±0.25 13.43±0.86
    平均血小板体积 MPV/fL 7.91±1.39 7.41±1.05
    血小板压积 PCT/% 0.70±0.17 0.75±0.11
    注:*表示与对照组相比存在显著性差异 (P<0.05)。 Note: * indicates significant difference compared with the control group (P<0.05).
    下载: 导出CSV
  • [1] GAUTHIER D T. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections[J]. Vet J, 2015, 203(1): 27-35. doi: 10.1016/j.tvjl.2014.10.028
    [2] DENG L, LI Y, GENG Y, et al. Molecular serotyping and antimicrobial susceptibility of Streptococcus agalactiae isolated from fish in China[J]. Aquaculture, 2019, 510: 84-89. doi: 10.1016/j.aquaculture.2019.05.046
    [3] CAO J M, LIU Z G, ZHANG D F, et al. Distribution and localization of Streptococcus agalactiae in different tissues of artificially infected tilapia (Oreochromis niloticus)[J]. Aquaculture, 2022, 546: 737370. doi: 10.1016/j.aquaculture.2021.737370
    [4] 李战军, 张建柏, 曹亚男, 等. 鱼类副乳房链球菌病研究进展[J]. 大连海洋大学学报, 2021, 36(6): 1059-1070. doi: 10.16535/j.cnki.dlhyxb.2021-032
    [5] ANSHARY H, KURNIAWAN R A, SRIWULAN S, et al. Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) Cultured in Net Cages in Lake Sentani, Papua, Indonesia[J]. SpringerPlus, 2014, 3(1): 627. doi: 10.1186/2193-1801-3-627
    [6] TAVARES G C, de QUEIROZ G A, ASSIS G B N, et al. Disease outbreaks in farmed amazon catfish (Leiarius Marmoratus×Pseudoplatystoma Corruscans) caused by Streptococcus agalactiae, S. iniae, and S. dysgalactiae[J]. Aquaculture, 2018, 495: 384-392. doi: 10.1016/j.aquaculture.2018.06.027
    [7] ZHANG Q L, LI H W, WU W, et al. The response of microbiota community to Streptococcus agalactiae infection in zebrafish intestine[J]. Front Microbiol, 2019, 10: 2848. doi: 10.3389/fmicb.2019.02848
    [8] PERERA R P, JOHNSON S K, COLLINS M D, et al. Streptococcus iniae associated with mortality of Tilapia nilotica×T. aurea Hybrids[J]. J Aquat Anim Health, 1994, 6(4): 335-340. doi: 10.1577/1548-8667(1994)006<0335:SIAWMO>2.3.CO;2
    [9] de SOUSA E L, ASSANE I M, SANTOS-FILHO N A, et al. Haematological, biochemical and immunological biomarkers, antibacterial activity, and survival in Nile tilapia Oreochromis niloticus after treatment using antimicrobial peptide LL-37 against Streptococcus agalactiae[J]. Aquaculture, 2021, 533: 736181. doi: 10.1016/j.aquaculture.2020.736181
    [10] NING L J, GAO L L, ZHOU W, et al. Beneficial effects of dietary mulberry leaf along with multi-enzyme premix on the growth, immune response and disease resistance of golden pompano Trachinotus ovatus[J]. Aquaculture, 2021, 535: 736396. doi: 10.1016/j.aquaculture.2021.736396
    [11] CAI X H, PENG Y H, WANG Z C, et al. Characterization and identification of streptococci from golden pompano in China[J]. Dis Aquat Org, 2016, 119(3): 207-217. doi: 10.3354/dao02998
    [12] GUO S, MO Z, WANG Z, et al. Isolation and pathogenicity of Streptococcus iniae in offshore cage-cultured Trachinotus ovatus in China[J]. Aquaculture, 2018, 492: 247-252. doi: 10.1016/j.aquaculture.2018.04.015
    [13] LIU C, MA J, ZHANG D F. et al. Immune response and apoptosis-related pathways induced by Aeromonas schubertii infection of hybrid snakehead (Channa maculata♀×Channa argus♂)[J]. Pathogens, 2021, 10(8): 997. doi: 10.3390/pathogens10080997
    [14] GUANG H, WANG Z X, LI E M, et al. A novel calreticulin-related molecule that interacts with bacteria and enhances host resistance against bacterial infection in black rockfish, Sebastes schlegeli[J]. Fish Shellfish Immunol, 2019, 93: 823-831. doi: 10.1016/j.fsi.2019.08.043
    [15] 张羽. MAPK/Erk通路对尼罗罗非鱼T细胞免疫的调控机制[D]. 上海: 华东师范大学, 2021: 45.
    [16] GERRITS O P, van LEEUWEN M. B. M. Glycol methacrylate embedding in histotechnology: the hematoxylin-eosin stain as a method for assessing the stability of glycol methacrylate sections[J]. Stain Technol, 1987, 62(3): 181-190. doi: 10.3109/10520298709107990
    [17] LAITH A A, AMBAK M A, HASSAN, M, et al. Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus)[J]. Vet World, 2017, 10(1): 101-111. doi: 10.14202/vetworld.2017.101-111
    [18] ZAMRI-SAAD M, AMAL M N, SITI-ZAHRAH A. Pathological changes in red tilapias (Oreochromis spp. ) naturally infected by Streptococcus agalactiae[J]. J Comp Pathol, 2010, 143(2/3): 227-229.
    [19] KE X L, LIU Z G, CHEN S Z, et al. The immune efficacy of a Streptococcus agalactiae immersion vaccine for different sizes of young tilapia[J]. Aquaculture, 2021, 534: 736289. doi: 10.1016/j.aquaculture.2020.736289
    [20] 陈建国. 美洲黑石斑鱼 (Centropristis striata) “突眼”症的病原菌分离鉴定和组织病理学研究[D]. 上海: 上海海洋大学, 2017: 23.
    [21] GERRINGER M E, DRAZEN J C, YANCEY P H. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes[J]. Deep Sea Res I, 2017, 125: 135-146. doi: 10.1016/j.dsr.2017.05.010
    [22] ZHAO Y Y, TANG J N, YANG D R, et al. Staphylococcal enterotoxin M induced inflammation and impairment of bovine mammary epithelial cells[J]. J Dairy Sci, 2020, 103(9): 8350-8359. doi: 10.3168/jds.2019-17444
    [23] 陈梓聪, 陈丕茂, 袁华荣, 等. 斑节对虾幼虾力竭运动后呼吸代谢变化研究[J]. 南方水产科学, 2020, 16(4): 75-83. doi: 10.12131/20200017
    [24] KIM J H, KIM J Y, LIM L J, et al. Effects of waterborne nitrite on hematological parameters and stress indicators in olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater[J]. Chemosphere, 2018, 209: 28-34. doi: 10.1016/j.chemosphere.2018.06.082
    [25] KIM J H, SOHN S, KIM S K, et al. Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda[J]. Fish Shellfish Immunol, 2020, 97: 194-203. doi: 10.1016/j.fsi.2019.12.011
    [26] SHAKOORI A R, ALAM J, AZIZ, F. et al. Toxic effects of bifenthrin (talstar) on the liver of Gallus domesticus[J]. Ann Nucl Energy, 1992, 2: 1-11.
    [27] LIN W, Li L, CHEN J, et al. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella)[J]. Fish Shellfish Immunol, 2018, 80: 540-545. doi: 10.1016/j.fsi.2018.06.050
    [28] PAL S, RAY S D, HOMECHAUDHURI S. Evaluation of in vivo non-specific immunity and oxidative stress in Labeo rohita (Hamilton, 1822) infected with Aeromonas hydrophila as biomarker for early diagnosis[J]. Int J Fish Aquat Stud, 2015, 3(1): 116-124.
    [29] CHEN H J, YUAN G L, SU J G, et al. Hematological analysis of Ctenopharyngodon idella, Megalobrama amblycephala and Pelteobagrus fulvidraco: morphology, ultrastructure, cytochemistry and quantification of peripheral blood cells[J]. Fish Shellfish Immunol, 2019, 90: 376-384. doi: 10.1016/j.fsi.2019.04.044
    [30] NARRA M R. Haematological and immune upshots in Clarias batrachus exposed to dimethoate and defying response of dietary ascorbic acid[J]. Chemosphere, 2017, 168: 988-995. doi: 10.1016/j.chemosphere.2016.10.112
    [31] 杨玲, 苏建国. 草鱼呼肠孤病毒Ⅱ型自然发病与人工注射感染草鱼的病理症状和病毒分布研究[J]. 水产学报, 2022, 46(2): 250-260.
    [32] BURGOS-ACECES M, LIONETTI L, FAGGIO C. C Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish[J]. Sci Total Environ, 2019, 670: 1170-1183. doi: 10.1016/j.scitotenv.2019.03.275
    [33] LEVINE G J. Veterinary hematology and clinical chemistry[J]. Vet Clin Pathol, 2014, 43(3): 460. doi: 10.1111/vcp.12181
    [34] CHEN H J, YUAN G L, SU J G, et al. Hematological and immune genes responses in yellow catfish (Pelteobagrus fulvidraco) with septicemia induced by Edwardsiella ictalurid[J]. Fish Shellfish Immunol, 2020, 97: 531-539. doi: 10.1016/j.fsi.2019.11.071
    [35] SIMMONS S O, FAN C Y, RAMABHADRAN R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening[J]. Toxico Sci, 2009, 111(2): 202-225. doi: 10.1093/toxsci/kfp140
    [36] SUSIN S A, ZANZAMI N, CASTEDO M. et al. The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis[J]. J Exp Med, 1997, 186(1): 25-37. doi: 10.1084/jem.186.1.25
    [37] 丁耀忠. QH-08PRRS分离株Caspase-8介导的凋亡途径及实时定量PCR方法的建立[D]. 兰州: 甘肃农业大学, 2021: 8.
    [38] ZHANG L, LI L, ZHANG G. Gene discovery, comparative analysis and expression profile reveal the complexity of the Crassostrea gigas apoptosis system[J]. Dev Comp Immunol, 2011, 35(5): 603-610. doi: 10.1016/j.dci.2011.01.005
    [39] KONG L H, QIAN K, WU, S W, et al. Functional characterization of TNF-alpha in pufferfish (Takifugu obscurus) in immune response and apoptosis against Aeromonas hydrophila[J]. J Fish Dis, 2021, 44(9): 1343-1353. doi: 10.1111/jfd.13393
    [40] ZHU J, GAN X, AO Q, et al. Basal polarization of the immune responses to Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2018, 75: 336-345. doi: 10.1016/j.fsi.2018.01.022
  • 加载中
计量
  • 文章访问数:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-05-05
  • 录用日期:  2022-06-13
  • 网络出版日期:  2022-06-18

目录

    /

    返回文章
    返回