Genetic diversity and population structure of Gymnocypris przewalskii based on SNP markers
-
摘要: 为探究青海湖裸鲤 (Gymnocypris przewalskii) 的种质资源现状,为该物种保护措施的制定提供参考依据。首次利用基因分型技术 (Genotyping-by-sequencing, GBS),对青海湖水域的6个地理群体共72尾青海湖裸鲤进行单核苷酸多态性 (Single nucleotide polymorphism, SNP) 标记开发和遗传特征分析。共检测出1 600 061个SNP位点,质控后筛选出45 266个高质量的SNP位点用于遗传分析,发现核苷酸多样性 (Pi) 为0.317 0~0.327 4,观测杂合度 (Ho) 和期望杂合度 (He) 分别为0.459 4~0.482 3和0.336 7~0.344 4。6个地理群体的遗传距离 (D) 为0.018 4~0.023 3,两两群体的遗传分化系数 (Fst) 均不显著 (P>0.05)。分子方差分析 (Analysis of molecular variances, AMOVA) 显示102.37%的遗传变异来自群体内;群体遗传结构和系统发育进化树分析均显示6个群体属于一个集群,具有遗传同质性;而主成分判别分析 (Discriminant analysis of principal components, DAPC) 表明哈尔盖河、黑马河和沙柳河群体相互交叉聚类,其余3个地理群体分别聚类。综上,6个青海湖裸鲤群体的Ho均大于He,种群结构单一。Abstract: To investigate the genetic diversity and genetic differentiation of natural resources of Gymnocypris przewalskii, and provide references for its conservation measures, we collected 72 individuals of G. przewalskii from six natural populations in Qinghai Lake to analyze the genomic SNP and genetic characteristics by using simplified genome sequencing. Altogether 1 600 061SNP markers were obtained, and 45 266 high-quality SNP loci were screened for genetic analysis after filtering. The average Pi diversity index was 0.317 0–0.327 4. The average observed heterozygosity (Ho) and expected heterozygosity (He) were 0.459 4–0.482 3 and 0.336 7–0.344 4, respectively. The genetic distance (D) was 0.018 4–0.023 3 and the genetic differentiation index (Fst) were not significant (P>0.05). AMOVA analysis shows that the genetic variation was 102.37% within populations. Further-more, both population structure and phylogenetic tree analysis show that the six G. przewalskii populations clustered into one glade with similar genetic structure. In contrast, the genetic structure obtained from DAPC analysis was relatively clearer, showing that the Haergai, Heima and Shaliu River populations cross-clustered with each other, while the remaining three populations clustered into three other branches. In conclusion, the observed heterozygosity of the six geographic populations was higher than the expected value, with a homogeneous population structure.
-
表 1 青海湖裸鲤的样品采集信息
Table 1. Sample information of G. przewalskii
采集地点
Sampling site经纬度
Latitude and longitude数量
Sample size/尾取样部位
Sampling part布哈河 BHH 99°44'24''E, 37°02'24''N 12 尾鳍 哈尔盖河 HEG 100°28'48''E, 37°13'12''N 12 尾鳍 黑马河 HMH 99°46'12''E, 36°43'48''N 12 尾鳍 泉吉河 QJH 99°53'24''E, 37°14'24''N 12 尾鳍 沙柳河 SLH 100°10'48''E, 37°14'24''N 12 尾鳍 一郎剑 YLJ 100°24'00''E, 36°42'00''N 12 尾鳍 表 2 GBS测序数据统计
Table 2. Data statistics after genotyping by sequencing
样品
Sample原始数据量
Raw base/bp有效测序数量
Clean base/bpQ20/% Q30/% 比对率
Ratio/%覆盖度
Cover/%GC/% BHH01 1 389 577 920 1 360 512 534 97.20 92.24 72.38 41.86 39.43 BHH02 1 927 663 064 1 910 163 826 97.00 91.73 71.71 44.45 39.28 BHH03 1 355 388 864 1 330 014 564 97.23 92.29 72.40 41.63 39.38 BHH04 1 854 567 996 1 840 004 206 97.14 92.08 68.34 44.96 39.35 BHH05 2 265 476 520 2 228 411 786 97.24 92.33 74.30 44.36 39.34 BHH06 1 602 581 328 1 578 477 056 97.16 92.14 72.72 43.72 39.33 BHH07 1 493 156 128 1 486 185 014 96.56 90.65 68.29 41.88 39.62 BHH08 3 625 787 104 3 582 205 358 96.78 91.19 69.32 47.85 39.82 BHH09 4 188 671 696 4 152 405 788 96.70 91.03 66.88 49.40 39.92 BHH10 3 783 676 336 3 743 104 234 96.83 91.29 69.96 48.18 39.83 BHH11 2 886 390 548 2 857 277 330 96.82 91.26 69.67 48.13 39.83 BHH12 2 436 548 180 2 404 222 590 96.86 91.36 71.23 45.73 39.80 HEG01 4 452 147 016 4 387 873 466 96.49 90.46 71.07 50.54 39.53 HEG02 3 773 555 144 3 725 723 130 96.44 90.34 70.17 48.07 39.55 HEG03 4 206 118 100 4 143 796 870 96.45 90.39 71.59 48.20 39.51 HEG04 5 078 768 024 5 001 034 014 96.47 90.42 71.66 49.81 39.56 HEG05 1 153 394 716 1 139 883 590 96.54 90.61 73.61 39.84 39.45 HEG06 4 843 459 540 4 792 194 098 96.43 90.37 73.01 48.96 39.54 HEG07 1 501 577 864 1 481 599 170 97.26 92.36 74.21 40.65 39.47 HEG08 2 693 727 504 2 657 441 746 97.31 92.46 76.19 44.39 39.39 HEG09 1 194 213 752 1 168 489 596 97.31 92.39 76.99 38.43 39.40 HEG10 1 372 619 144 1 339 243 546 96.89 91.50 72.82 40.60 39.33 HEG11 3 088 083 656 3 050 778 984 97.11 92.02 74.10 45.97 39.42 HEG12 1 619 334 204 1 585 556 642 97.16 92.14 75.77 41.52 39.28 HMH01 1 232 127 752 1 200 318 504 97.02 91.83 71.56 40.28 39.22 HMH02 3 026 290 652 2 985 218 180 97.23 92.31 73.98 44.96 39.25 HMH03 1 399 119 468 1 372 569 888 97.27 92.41 73.46 41.05 39.17 HMH04 1 970 927 056 1 921 307 060 97.28 92.39 73.24 43.12 39.30 HMH05 2 647 884 508 2 596 362 030 97.23 92.30 74.44 44.43 39.30 HMH06 1 708 154 352 1 660 462 320 97.29 92.44 73.06 41.96 39.26 HMH07 4 025 817 860 3 985 350 084 97.69 93.28 70.09 48.71 38.17 HMH08 5 205 970 488 5 117 137 470 96.65 90.89 73.81 48.98 39.20 HMH09 4 940 601 456 4 863 779 832 96.65 90.91 75.28 48.08 39.24 HMH10 1 963 437 692 1 945 709 624 96.60 90.76 73.03 43.03 39.22 HMH11 1 666 515 692 1 642 075 532 96.55 90.67 72.54 41.39 39.09 HMH12 4 347 827 000 4 286 730 938 96.56 90.69 71.40 48.89 39.35 QJH01 5 147 123 416 5 090 638 928 96.32 90.09 70.17 55.23 39.50 QJH02 3 584 795 680 3 565 628 068 95.95 89.37 66.88 49.55 39.44 QJH03 6 454 315 492 6 410 786 704 95.95 89.35 71.12 51.56 39.43 QJH04 3 914 473 956 3 894 271 390 95.87 89.22 67.09 48.68 39.41 QJH05 5 765 227 264 5 711 763 208 96.41 90.36 73.91 60.43 39.40 QJH06 1 578 283 708 1 552 126 286 96.41 90.24 74.89 50.12 39.39 QJH07 1 396 840 084 1 358 462 200 96.85 91.53 72.06 47.11 39.26 QJH08 2 275 133 940 2 251 308 686 97.01 91.90 70.44 52.56 39.29 QJH09 1 340 744 972 1 315 726 238 97.13 92.17 74.67 41.01 39.25 QJH10 2 048 956 056 2 009 990 568 97.09 92.05 71.84 44.26 39.38 QJH11 2 092 240 212 2 061 253 446 97.04 91.95 71.65 45.25 39.40 QJH12 2 039 776 892 1 992 244 374 97.13 92.16 72.73 44.70 39.35 SLH01 7 040 469 056 6 945 862 130 96.65 90.81 70.87 52.34 39.45 SLH02 4 498 263 220 4 427 530 468 96.69 90.89 71.71 49.57 39.50 SLH03 5 164 724 600 5 075 426 948 96.66 90.86 71.14 50.79 39.57 SLH04 1 272 379 640 1 259 999 052 96.63 90.74 73.42 39.66 39.41 SLH05 1 050 489 020 1 032 232 476 96.59 90.67 73.08 37.98 39.22 SLH06 2 360 256 124 2 322 023 500 96.63 90.75 72.68 44.17 39.56 SLH07 2 787 269 152 2 752 924 192 97.26 92.34 71.90 45.18 39.52 SLH08 1 659 152 708 1 635 202 024 97.22 92.24 70.67 42.13 39.55 SLH09 1 974 618 488 1 936 922 806 97.16 92.16 68.63 43.39 39.57 SLH10 1 434 149 732 1 414 000 878 97.20 92.20 67.84 42.37 39.50 SLH11 1 465 104 312 1 452 041 076 97.13 92.12 67.80 42.89 39.64 SLH12 1 593 403 584 1 565 068 850 96.44 90.59 73.79 41.90 39.02 YLJ01 1 458 951 168 1 441 355 132 97.14 92.12 71.91 41.68 39.51 YLJ02 1 933 206 744 1 917 865 930 97.14 92.17 67.47 44.98 39.14 YLJ03 3 128 604 208 3 093 206 580 97.14 92.21 72.61 47.09 39.06 YLJ04 1 343 484 720 1 316 565 174 97.24 92.32 76.23 40.09 38.99 YLJ05 1 588 695 432 1 551 573 180 97.07 91.93 72.37 42.47 38.97 YLJ06 3 330 149 352 3 289 825 750 97.25 92.34 70.46 47.58 39.00 YLJ07 1 873 001 868 1 844 675 484 97.30 92.47 72.27 43.94 39.03 YLJ08 2 175 175 880 2 142 504 822 96.39 90.46 71.81 44.84 39.17 YLJ09 3 172 296 188 3 134 366 418 96.33 90.34 72.60 47.36 39.14 YLJ10 2 801 743 496 2 774 569 032 96.34 90.37 69.66 47.28 39.06 YLJ11 2 270 060 848 2 236 343 778 96.47 90.63 72.99 44.74 39.09 YLJ12 2 007 127 400 1 987 101 014 96.34 90.38 71.46 44.26 39.08 表 3 青海湖裸鲤遗传多样性分析
Table 3. Genetic diversity of G. przewalskii
群体
Population观测杂合度
Ho观测纯合度
OH期望杂合度
He期望纯合度
EH核苷酸多样性
Pi布哈河 BHH 0.459 8 0.540 2 0.337 3 0.662 7 0.317 2 哈尔盖河 HEG 0.468 6 0.531 4 0.342 1 0.657 9 0.321 7 黑马河 HMH 0.466 1 0.533 9 0.340 0 0.660 0 0.320 5 泉吉河 QJH 0.482 3 0.517 7 0.344 4 0.655 6 0.327 4 沙柳河 SLH 0.465 8 0.534 2 0.343 3 0.656 8 0.318 1 一郎剑 YLJ 0.459 4 0.540 6 0.336 7 0.663 3 0.317 0 表 4 青海湖裸鲤的遗传距离和遗传分化系数表
Table 4. Genetic differentiation and distance of G. przewalskii
群体 Population BHH HEG HMH QJH SLH YLJ 布哈河 BHH 0.022 8 0.022 7 0.019 1 0.023 2 0.023 3 哈尔盖河 HEG −0.021 7 0.021 9 0.018 6 0.022 6 0.022 7 黑马河 HMH −0.022 3 −0.022 4 0.018 4 0.022 5 0.022 4 泉吉河 QJH −0.021 5 −0.023 0 −0.023 0 0.019 2 0.019 3 沙柳河 SLH −0.027 2 −0.025 7 −0.026 6 −0.029 8 0.023 2 一郎剑 YLJ −0.021 4 −0.021 7 −0.022 4 −0.021 2 −0.027 0 注:下三角为群体间遗传分化系数,上三角为群体间遗传距离。 Note: The lower triangle is the genetic differentiation coefficient (Fst) among populations, and the upper triangle is the genetic distance (D) among populations. 表 5 6个青海湖裸鲤群体的分子变异分析 (AMOVA)
Table 5. Analysis of molecular variation (AMOVA) of six populations of G. przewalskii
变异来源
Source of variation自由度
Degree of freedom平方和
Sum of squares变异组分
Variance components变异百分率
Percentage of variation/%群体间 Among population 5 13 287.29 −138.528 8Va −2.37 群体内 Within population 138 825 536.29 5 982.147 0Vb 102.37 总计 Total 143 838 823.58 5 843.618 3 -
[1] 史建全. 青海湖裸鲤研究现状与资源保护对策[J]. 青海科技, 2008, 15(5): 13-16. doi: 10.3969/j.issn.1005-9393.2008.05.005 [2] 汪松, 解焱. 中国物种红色名录[M]. 北京: 高等教育出版社, 2004: 468. [3] HITOSHI A, CORINNE S. Is hatchery stocking a help or harm?[J]. Aquaculture, 2010, 308(S1): S2-S11. [4] 史建全, 祁洪芳, 杨建新, 等. 青海湖裸鲤增殖放流效果评估[J]. 农技服务, 2016, 33(12): 128-129. doi: 10.3969/j.issn.1004-8421.2016.12.101 [5] 丰朝晖, 俞录贤, 付生云, 等. 青海湖裸鲤池塘“春片”鱼种的培育措施[J]. 科学养鱼, 2021(3): 11-12. doi: 10.3969/j.issn.1004-843X.2021.03.007 [6] 吴艳红, 江华敏, 付生云. 工厂化循环水车间青海湖裸鲤商品鱼养殖技术[J]. 科学养鱼, 2020(4): 82-83. doi: 10.3969/j.issn.1004-843X.2020.04.044 [7] 丰朝晖, 俞录贤, 罗颖, 等. 青海湖裸鲤鱼种培育水质调节技术[J]. 科学养鱼, 2019(5): 7-9. [8] 黄屾, 李长忠, 李梓瑄, 等. 盐度对青海湖裸鲤生长及渗透调节基因的影响[J]. 水产科学, 2022, 41(4): 527-536. doi: 10.16378/j.cnki.1003-1111.21077 [9] 王萍, 来琦芳, 么宗利, 等. 盐碱环境下青海湖裸鲤肠道HCO3-分泌相关基因表达差异[J].海洋渔业, 2015, 37(4): 341-348. [10] 江华敏, 吴金平, 吴艳红, 等. 茜素络合物对青海湖裸鲤幼鱼的耳石标记研究[J]. 科学养鱼, 2021(3): 72-74. doi: 10.3969/j.issn.1004-843X.2021.03.038 [11] 周玲, 金章东, WILLIAMS I S, 等. 青海湖裸鲤耳石轮纹O-Sr同位素组成及对其洄游行为的指示[J]. 科学通报, 2016, 61(6): 668-675. [12] 周其椿, 张显波, 李建光, 等. 青海湖裸鲤eif5b基因克隆与初步功能分析[J]. 贵州农业科学, 2021, 49(2): 92-96. doi: 10.3969/j.issn.1001-3601.2021.02.015 [13] 马清花, 陈雪妍, 卫唯, 等. 青海湖裸鲤AP-1基因的克隆与表达分析[J]. 基因组学与应用生物学, 2020, 39(7): 2964-2971. doi: 10.13417/j.gab.039.002964 [14] 梁健, 陈雪妍, 卫唯, 等. 青海湖裸鲤TOB1和TOB2基因的克隆与表达分析[J]. 西北农林科技大学学报 (自然科学版), 2020, 48(5): 31-41. [15] 王朝溪, 史建全, 卫福磊, 等. 青海湖不同支流中青海湖裸鲤的AFLP遗传多样性分析[J]. 基因组学与应用生物学, 2015, 34(1): 82-89. [16] 张仁意, 李国刚, 汤永涛, 等. 青海湖裸鲤线粒体DNA D-loop区的遗传多样性及其遗传分化研究[J]. 中国农学通报, 2013, 29(32): 71-76. doi: 10.3969/j.issn.1000-6850.2013.32.014 [17] 蒋鹏, 史建全, 张研, 等. 应用微卫星多态分析青海湖裸鲤 (Gymnocypris przewalski (Kessler)) 六个野生群体的遗传多样性[J]. 生态学报, 2009, 29(2): 939-945. doi: 10.3321/j.issn:1000-0933.2009.02.048 [18] 孟鹏, 王伟继, 孔杰, 等. 五条河流青海湖裸鲤的同工酶变异[J]. 动物学报, 2007(5): 892-898. doi: 10.3969/j.issn.1674-5507.2007.05.014 [19] 陈大庆, 张春霖, 鲁成, 等. 青海湖裸鲤繁殖群体线粒体基因组D-loop区序列多态性[J]. 中国水产科学, 2006, 13(5): 800-806. doi: 10.3321/j.issn:1005-8737.2006.05.017 [20] 许生成, 李太平, 李均祥, 等. 青海湖裸鲤线粒体DNA多态性研究[J]. 黑龙江畜牧兽医, 2003(1): 11-12. doi: 10.3969/j.issn.1004-7034.2003.01.007 [21] 祁得林. 青海湖裸鲤遗传多样性研究[D]. 杭州: 浙江大学, 2002: 51. [22] 赵凯, 李军祥, 张亚平, 等. 青海湖裸鲤mtDNA遗传多样性的初步研究[J]. 遗传, 2001, 23(5): 445-448. doi: 10.3321/j.issn:0253-9772.2001.05.014 [23] VIGNAL A, MILAN D, SANCRISTOBAL M, et al. A review on SNP and other types of molecular markers and their use in animal genetics[J]. Genet Sel Evol, 2002, 34(3): 275-305. doi: 10.1186/1297-9686-34-3-275 [24] ELSHIRE R J, GLAUBITZ J C, SUN Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLoS One, 2017, 6(5): e19379. [25] 刘凯, 冯晓宇, 沈玉帮, 等. 基于GBS技术分析鲂鲌鱼类及其杂交子代的遗传结构[J]. 水产学报, 2021, 45(8): 1307-1316. [26] ZHANG B, JIA L, HE X, et al. Large scale SNP unearthing and genetic architecture analysis in sea-captured and cultured populations of Cynoglossus semilaevis[J]. Genomics, 2020, 112(5): 3238-3246. doi: 10.1016/j.ygeno.2020.06.013 [27] ROCHETTE N C, CATCHEN J M. Deriving genotypes from RAD-seq short-read data using Stacks[J]. Nat Protoc, 2017, 12(12): 2640-2659. doi: 10.1038/nprot.2017.123 [28] DURBIN L R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 25(14): 1754-1760. [29] van der AUWERA G A, CARNEIRO M O, HARTL C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline[J]. Curr Protoc Bioinformatics, 2013, 43(1110): 10-11. [30] ROUSSET F. genepop'007: a complete re-implementation of the genepop software for Windows and Linux[J]. Mol Ecol Resour, 2008, 8(1): 103-106. doi: 10.1111/j.1471-8286.2007.01931.x [31] PFEIFER B, WITTELSBÜRGER U, RAMOS-ONSINS S E, et al. PopGenome: an efficient Swiss army knife for population genomic analyses in R[J]. Mol Biol Evol, 2014, 31(7): 1929-36. doi: 10.1093/molbev/msu136 [32] LAURENT E, GUILLAUME L, STEFAN S. Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evol Bioinform, 2007, 1: 47-50. [33] SUDHIR K, GLEN S, MICHAEL L, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096 [34] ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Res, 2009, 19(9): 1655-1664. doi: 10.1101/gr.094052.109 [35] VILELLA A J, SEVERIN J, URETA-VIDAL A, et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates[J]. Genome Res, 2009, 19(2): 327-335. doi: 10.1101/gr.073585.107 [36] IVICA L, PEER B. Interactive Tree Of Life (iTOL) v4: recent updates and new developments[J]. Nucleic Acids Res, 2019, 47(W1): W256-W259. doi: 10.1093/nar/gkz239 [37] THIBAUT J, SÉBASTIEN D, FRANÇOIS B. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations[J]. BMC Genet, 2010, 11(1): 94. doi: 10.1186/1471-2156-11-94 [38] JIANG L, CHEN Y, ZHANG J, et al. Population structure of large yellow croaker (Larimichthys crocea) revealed by single nucleotide polymorphisms[J]. Biochem Syst Ecol, 2015, 63: 136-142. doi: 10.1016/j.bse.2015.09.025 [39] 李光华, 金方彭, 周睿, 等. 基于SNP标记的短须裂腹鱼自然群体遗传多样性分析[J]. 水生生物学报, 2018, 42(2): 271-276. doi: 10.7541/2018.034 [40] 金方彭, 李光华, 冷云, 等. 澜沧江中上游光唇裂腹鱼四个地理群体遗传多样性分析[J]. 水生生物学报, 2021, 45(1): 60-68. doi: 10.7541/2021.2019.253 [41] SHAKLEE J B, TAMARU C S, WAPLES R S. Speciation and evolution of marine fishes studied by the electrophoretic analysis of proteins[J]. Pac Sci, 1982, 36(2): 141-157. [42] WRIGHT S. Evolution and the genetics of population variability within and among natural populations[M]. Chicago: University of Chicago Press, 1978: 439-459. [43] 赵凯, 何舜平, 彭作刚, 等. 青海湖裸鲤的种群结构和线粒体DNA变异[J]. 青海大学学报 (自然科学版), 2006, 24(4): 1-4. [44] 张春霖, 陈大庆, 史建全, 等. 青海湖裸鲤繁殖群体遗传多样性的RAPD分析[J]. 水产学报, 2005, 29(3): 307-312. [45] 周玲, 金章东, 李福春, 等. 青海湖裸鲤 (湟鱼) 耳石的矿物组成及其Sr/Ca对洄游习性的潜在示踪[J]. 中国科学: 地球科学, 2012, 42(8): 1210-1217. [46] 刘伟, 罗仕立, 周其椿, 等. 青海湖裸鲤遗传多样性研究概况[J]. 农技服务, 2017, 34(17): 86-88. doi: 10.3969/j.issn.1004-8421.2017.17.074 [47] 杨海乐, 危起伟. 论水生野生动物的主动保护与被动保护[J]. 湖泊科学, 2021, 33(1): 1-10. doi: 10.18307/2021.0102 -