留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响

兰鲲鹏 吴光德 王珺 陈旭 王芸 周传朋 林黑着 马振华

兰鲲鹏, 吴光德, 王珺, 陈旭, 王芸, 周传朋, 林黑着, 马振华. 饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响[J]. 南方水产科学. doi: 10.12131/20220082
引用本文: 兰鲲鹏, 吴光德, 王珺, 陈旭, 王芸, 周传朋, 林黑着, 马振华. 饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响[J]. 南方水产科学. doi: 10.12131/20220082
LAN Kunpeng, WU Guangde, WANG Jun, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua. Effects of dietary supplementation of inulin on survival, growth and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science. doi: 10.12131/20220082
Citation: LAN Kunpeng, WU Guangde, WANG Jun, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua. Effects of dietary supplementation of inulin on survival, growth and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science. doi: 10.12131/20220082

饲料中添加菊粉对卵形鲳鲹幼鱼存活、生长和肠道菌群的影响

doi: 10.12131/20220082
基金项目: 国家自然科学基金面上项目(32172984);南方海洋科学与工程广东省实验室 (湛江) 项目“深远海适养鱼类绿色养殖技术创新与示范”(ZJW-2019-06);中国东盟海上合作基金项目;中国水产科学研究院中央级公益性科研院所基本科研业务费 (2020TD55);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021XK02, 2021SD09)
详细信息
    作者简介:

    兰鲲鹏 (1994—),男,硕士研究生,研究方向为鱼类营养与饲料。E-mail: 2496729687@qq.com

    通讯作者:

    王 珺 (1979—),女,副研究员,博士,从事水产动物营养与饲料学研究。Email: jwang@scsfri.ac.cn

  • 中图分类号: S 917.4

Effects of dietary supplementation of inulin on survival, growth and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus)

  • 摘要: 菊粉等益生元具有促进动物肠道中有益菌生长,提高动物免疫力、成活率和生长性能的作用,在动物营养与饲料领域有广阔的应用前景。研究了在卵形鲳鲹 (Trachinotus ovatus) 幼鱼饲料中添加菊粉对其成活率、生长性能和肠道微生物的影响,并评估了菊粉的适宜添加量。在基础饲料中分别添加0 (对照组)、0.3%、0.6%、0.9%、1.2%和1.5%的菊粉制成6种等氮等脂的实验饲料,饲喂幼鱼[初始体质量 (18.85±0.02) g] 8周。结果显示,菊粉添加量1.5%处理组的成活率显著高于其他组 (P<0.05),其他各组之间差异不显著 (P>0.05);1.5%处理组的特定生长率最高;添加菊粉显著降低了肝体比和脂体比,肝体比随着菊粉添加量的增加先降低后升高,0.9%处理组的肝体比最低;1.2%和1.5%处理组的脂体比显著低于其他组。添加菊粉各组的肠绒毛高度均大于对照组。各处理组肠道微生物的优势种均属变形菌门、厚壁菌门和拟杆菌门,但优势种的丰度存在差异,变形菌门丰度最高和最低值分别出现在1.5%和0.6%处理组,0.6%处理组的拟杆菌门和厚壁菌门丰度最高,1.5%处理组的厚壁菌门丰度最低,对照组的拟杆菌门丰度最低。无色杆菌属 (Achromobacter)、短波单胞菌属 (Brevundimonas) 和潘多拉菌属 (Pandoraea) 是卵形鲳鲹肠道微生物群落的优势种。1.5%处理组的无色杆菌属种群丰度最高,无色杆菌属、短波单胞菌属、潘多拉均属、代尔夫特菌属 (Delftia)、鞘氨醇单胞菌属 (Sphingomonas) 种群丰度在0.6%处理组最低;添加菊粉使肠道中的无色杆菌属和普雷沃氏菌属 (Prevotella) 等有益菌的数量增加。综上,认为在饲料中添加1.5%的菊粉可以提高卵形鲳鲹幼鱼的成活率和生长速度。
  • 图  1  摄食不同菊粉水平饲料的卵形鲳鲹肠绒毛高度和杯状细胞数量

    注:方柱上不同字母表示差异显著 (P<0.05).

    Figure  1.  Intestinal villus height and goblet cell number of T. ovatus fed with diets containing inulin at various concentrations

    Note: Different letters on the bar indicate significant difference (P<0.05).

    图  2  摄食不同菊粉水平饲料的卵形鲳鲹肠道菌群门水平的相对丰度

    Figure  2.  Relative abundance of predominant phylum of gastrointestinal microbiota of T. ovatus fed with diets containing inulin at various concentrations

    图  3  摄食不同菊粉水平饲料的卵形鲳鲹肠道菌群属水平的相对丰度

    Figure  3.  Relative abundance of predominant genus of gastrointestinal microbiota of T. ovatus fed with diets containing inulin at various concentrations

    图  4  卵形鲳鲹幼鱼肠道菌群水平聚类分析

    Figure  4.  Cluster analysis of intestinal flora of T. ovatus

    表  1  6 种实验饲料配方及营养成分 (干质量)

    Table  1.   Formulation and proximate composition of six experimental diets (Dry mass) %

    原料
    Ingredient
    菊粉添加量 Dietary inulin supplementation level/%
    00.30.60.91.21.5
    鱼粉 Fish meal404040404040
    豆粕 Soybean meal202020202020
    谷朊粉 Wheat gluten666666
    高筋面粉 High gluten wheat flour21.521.220.920.620.320
    鱼油 Fish oil666666
    卵磷脂 Lecithin222222
    矿物质和维生素预混料 Mineral and vitamin premix222222
    氯化胆碱 Choline chloride0.50.50.50.50.50.5
    维生素C Vitamin C0.50.50.50.50.50.5
    磷酸二氢钙 Monocalcium phosphate1.51.51.51.51.51.5
    菊粉 Inulin00.30.60.91.21.5
    营养成分分析 Proximate analysis
     水分 Moisture10.19.811.811.511.210.7
     粗蛋白 Crude protein46.646.746.046.646.446.5
     粗脂肪 Crude lipid10.810.711.211.011.011.0
     灰分 Ash13.113.212.812.913.512.9
    注:①. 矿物质预混料 (mg或g∙kg−1饲料): 氟化纳 2 mg、碘化钾 0.8 mg,氯化钴 50 mg、硫酸铜 10 mg、硫酸铁 80 mg、硫酸锌 50 mg、硫酸锰 60 mg、硫酸镁 1200 mg、磷酸二氢钙 3000 mg、氯化纳 100 mg、沸石粉 15.45 g;②. 维生素 预混料(mg或g∙kg−1饲料): 硫胺素 25 mg、核黄素 45 mg、盐酸吡哆醇 20 mg、维生素 B12 0.1 mg、维生素 K3 10 mg、肌醇 800 mg、泛酸 60 mg、烟酸 200 mg、叶酸 20 mg、生物素 1.20 mg、维生素 A 32 mg、维生素 D 5 mg、维生素 E 120 mg、维生素 C 2000 mg、胆碱 2000 mg、乙氧基喹啉 150 mg、次粉 11.52 g. Note: ①. Mineral premix (mg or g∙kg−1 diet): NaF 2 mg, KI 0.8 mg, CoCl2·6H2O 50 mg, CuSO4·5H2O 10 mg, FeSO4·H2O 80 mg, ZnSO4·H2O 50 mg, MnSO4·H2O 60 mg, MgSO4·7H2O 1 200 mg, Ca(H2PO3)2·H2O 3 000 mg, NaCl 100 mg, zoelite 10.45 g; ②. Vitamin premix (mg or g∙kg-1 diet): thiamin 25 mg, riboflavin 45 mg, pyridoxine HCl 20 mg, vitamin B12 0.1 mg, vitamin K3 10 mg, inositol 800 mg, pantothenic acid 60 mg, niacin acid 200 mg, folic acid 20 mg, biotin 1.20 mg, retinal acetate 32 mg, cholecalciferol 5 mg, α-tocopherol 120 mg, ascorbic acid 2 000 mg, Choline chloride 2 000 mg, ethoxyquin 150 mg, wheat middling 11.52 g.
    下载: 导出CSV

    表  2  饲料中添加菊粉对卵形鲳鲹生长和形态学指标的影响

    Table  2.   Effects of dietary supplemental inulin on growth and morphological indexes of juvenile T. ovatus

    指标
    Index
    菊粉添加量 Dietary inulin supplementation level/%
    00.30.60.91.21.5
    成活率 Survival/%76.67±2.54a77.78±1.47a72.22±1.47a71.44±1.47a72.22±2.42a83.33±1.67b
    终末体质量 Final body mass/g73.46±0.43ab71.20±2.21ab69.75±0.62a71.51±1.23ab71.51±1.04ab74.97±0.82b
    增重率 WG/%289.2±3.7ab279.6±11.3ab270.0±3.1a293.6±5.9ab279.0±5.4ab298.4±3.6b
    特定生长率 SGR/(%·d–1)2.43±0.02ab2.38±0.05ab2.34±0.02a2.44±0.03ab2.38±0.03ab2.47±0.02b
    饲料系数 FCR1.95±0.082.03±0.062.29±0.062.15±0.092.36±0.172.13±0.10
    肥满度 CF3.33±0.093.17±0.053.31±0.063.21±0.063.27±0.093.36±0.08
    脏体比 VSI/%6.23±0.106.07±0.125.87±0.185.91±0.145.64±0.216.05±0.13
    肝体比 HSI/%1.30±0.05b1.04±0.06a0.97±0.04a0.93±0.04a0.98±0.03a1.28±0.09b
    脂体比 IPF/%0.43±0.03bc0.44±0.03bc0.41±0.05b0.46±0.05c0.27±0.02a0.29±0.04a
    注:同行不同上标字母表示差异显著 (P<0.05). Note: Values within the same row with the different letters are significantly different (P<0.05).
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 22.
    [2] LI G, ZHAO D, LU H, et al. Identification and phylogenetic analysis of Vibrio vulnificus isolated from diseased Trachinotus ovatus in cage mariculture[J]. Aquaculture, 2006, 261(1): 17-25. doi: 10.1016/j.aquaculture.2006.07.013
    [3] ZHANG Q, YU H R, TONG T, et al. Dietary supplementation of Bacillus subtilis and fructooligosaccharide enhance the growth, non-specific immunity of juvenile ovate pompano, Trachinotus ovatus and its disease resistance against Vibrio vulnificus[J]. Fish Shellfish Immunol, 2014, 38(1): 7-14. doi: 10.1016/j.fsi.2014.02.008
    [4] WANG A R, RAN C, RING Ø E, et al. Progress in fish gastrointestinal microbiota research[J]. Rev Aquac, 2018, 10: 626-640. doi: 10.1111/raq.12191
    [5] GIBSON G R, ROBERFROID M B. Dietary modulation of the colonic microbiota: introducing the concept of prebiotics[J]. J Nutr, 1995, 125: 1401-1412. doi: 10.1093/jn/125.6.1401
    [6] ROBERFROID M. Prebiotics: the concept revisited[J]. J Nutr, 2007, 137: 830S-837S. doi: 10.1093/jn/137.3.830S
    [7] 郭志勋, 林黑着, 徐力文, 等. 饲料中添加半乳低聚糖对军曹鱼生长、部分血清免疫和生化因子的影响[J]. 南方水产科学, 2011, 7(1): 56-61. doi: 10.3969/j.issn.2095-0780.2011.01.009
    [8] APOLINARIO A C, DAMASCENO B P G, BELTRAO N E, et al. Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology[J]. Carbohydr Polym, 2014, 101: 368-378. doi: 10.1016/j.carbpol.2013.09.081
    [9] SLAVIN J. Fiber and prebiotics: mechanisms and health benefits[J]. Nutrients, 2013, 5(4): 1417-1435. doi: 10.3390/nu5041417
    [10] TUFARELLI V, LAUDADIO V. An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics[J]. J Exp Biol Agric Sci, 2016, 4(3S): 273-278. doi: 10.18006/2016.4(3S).273.278
    [11] MAUMELA P, RENSBURG E, CHIMPHANGO A F A, et al. Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L. )[J]. J Food Sci Technol, 2020, 57(2): 775-786. doi: 10.1007/s13197-019-04110-z
    [12] 奚文博, 严昌国, 崔莲花. 益生元-菊粉在动物营养中的研究进展[J]. 饲料研究, 2017(21): 8-12, 21.
    [13] WICHIENCHOT S, THAMMARUTWASIK P, JONGJAREONRAK A, et al. Extraction and analysis of prebiotics from selected plants from southern Thailand[J]. Songklanakarin J Sci Technol, 2011, 33(5): 517-523.
    [14] GIBSON G R, ROBERFROID M B. Dietary modulation of the colonic microbiota: introducing the concept of prebiotics[J]. J Nutr, 1995, 125: 1401-1412. doi: 10.1093/jn/125.6.1401
    [15] GIBSON G R, PROBERT H M, van LOO J A E, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics[J]. Nutr Res Rev, 2004, 17(2): 257-272.
    [16] WANG S W, WANG H C, WANG W, et al. Enhancement of the resistance of tilapia and grass carp to experimental Aeromonas hydrophila and Edwardsiella tarda infections by several polysaccharides[J]. Comp Immunol Microbiol Infect Dis, 1997, 20(3): 261-270. doi: 10.1016/S0147-9571(96)00035-5
    [17] MAHIOUS A S, GATESOUPE F J, HERVI M, et al. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758)[J]. Aquac Int, 2005, 14(3): 219-229.
    [18] CEREZUELA R, FUMANAL M, TAPIA-PANIAGUA S T, et al. Changes in intestinal morphology and microflora caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens[J]. Fish Shellfish Immunol, 2013, 34(5): 1063-1070. doi: 10.1016/j.fsi.2013.01.015
    [19] ESHAGHZADEH H, HOSEINIFAR S H, VAHABZADEH H, et al. The effects of dietary inulin on growth performances, survival and digestive enzyme activities of common carp (Cyprinus carpio) fry[J]. Aquac Nutr, 2015, 21(2): 242-247. doi: 10.1111/anu.12155
    [20] MO W, CHENG Z, CHOI W, et al. Use of food waste as fish feeds: effects of prebiotic fibers (inulin and mannanoligosaccharide) on growth and non-specific immunity of grass carp (Ctenopharyngodon idella)[J]. Environ Sci Pollut Res, 2015, 22(22): 17663-17671. doi: 10.1007/s11356-015-4971-z
    [21] TIENGTAM N, KHEMPAKA S, PAENGKOUM P, et al. Effects of inulin and Jerusalem artichoke (Helianthus tuberosus) as prebiotic ingredients in the diet of juvenile Nile tilapia (Oreochromis niloticus)[J]. Anim Feed Sci Technol, 2015, 207: 120-129. doi: 10.1016/j.anifeedsci.2015.05.008
    [22] OLSEN R E, MYKLEBUST R, KRYVI H, et al. Damaging effect of dietary inulin on intestinal enterocytes in Arctic charr (Salvelinus alpinus L. )[J]. Aquac Res, 2001, 32(11): 931-934. doi: 10.1046/j.1365-2109.2001.00626.x
    [23] IBRAHEM M D, FATHI M, MESALHY S, et al. Effect of dietary supplementation of inulin and vitamin C on the growth, hematology, innate immunity, and resistance of Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2010, 29(2): 241-246. doi: 10.1016/j.fsi.2010.03.004
    [24] ORTIZ L T, REBOLE A, VELASCO S, et al. Effects of inulin and fructooligosaccharides on growth performance, body chemical composition and intestinal microflora of farmed rainbow trout (Oncorhynchus mykiss)[J]. Aquac Nutr, 2013, 19(4): 475-482. doi: 10.1111/j.1365-2095.2012.00981.x
    [25] 吴越. 三种益生元对珍珠龙胆石斑鱼和卵形鲳鲹生长及免疫的影响[D]. 海口: 海南大学, 2019: 36-47.
    [26] BAKKE-MCKELLEP A M, PENN M H, SALAS P M, et al. Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microflora and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L. )[J]. Br J Nutr, 2007, 97(4): 699-713. doi: 10.1017/S0007114507381397
    [27] BURR G, HUME M, RICKE S, et al. In vitro and in vivo evaluation of the prebiotics GroBiotic-A, inulin, mannanoligosaccharide, and galactooligosaccharide on the digestive microflora and performance of hybrid striped bass (Morone chrysops×Morone saxatilis)[J]. Microb Ecol, 2010, 59(1): 187-198. doi: 10.1007/s00248-009-9597-6
    [28] 蒋飞, 严银龙, 施永海. 饲料中添加菊粉对暗纹东方鲀幼鱼生长、消化及非特异性免疫能力的影响[J]. 动物学杂志, 2020, 55(5): 599-605.
    [29] REZA A, ABDOLMAJID H, ABBAS M, et al. Effect of dietary prebiotic inulin on growth performance, intestinal micromicroflora, body composition and hematological parameters of iuvenile Beluga, Huso huso (Linnaeus, 1758)[J]. J World Aquac Soc, 2009, 40(6): 771-779. doi: 10.1111/j.1749-7345.2009.00297.x
    [30] 李会峰. 水飞蓟素、菊粉和β-葡聚糖对缓解凡纳滨对虾低盐应激的效应研究[D]. 上海: 华东师范大学, 2019: 63-64.
    [31] LIU F, PRABHAKAR M, JU J, et al. Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials[J]. Eur J Clin Nutr, 2017, 71(1): 9-20. doi: 10.1038/ejcn.2016.156
    [32] YU X R, FU C S, CUI Z C, et al. Inulin and isomalto-oligosaccharide alleviate constipation and improve reproductive performance by modulating motility-related hormones, short-chain fatty acids, and feces microflora in pregnant sows[J]. J Anim Sci, 2021, 99(10): 1-9.
    [33] CASPARY W F. Physiology and pathophysiology of intestinal absorption[J]. Am J Clin Nutr, 1992, 55(Suppl 1): 299S-308S.
    [34] BLOTTIERE H M, BUECHER B, GALMICHE J P, et al. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation[J]. Proc Nutr Soc, 2003, 62(1): 101-106. doi: 10.1079/PNS2002215
    [35] REHMAN H, ROSENKRANZ C, BOHM J, et al. Dietary inulin affects the morphology but not the sodium-dependent glucose and glutamine transport in the jejunum of broilers[J]. Poult Sci, 2007, 86(1): 118-122. doi: 10.1093/ps/86.1.118
    [36] NABIZADEH A. The effect of inulin on broiler chicken intestinal micromicroflora, gut morphology, and performance[J]. J Anim Feed Sci, 2012, 21(4): 725-734. doi: 10.22358/jafs/66144/2012
    [37] CEREZUELA R, FUMANAL M, TAPIA-PANIAGUA S T, et al. Changes in intestinal morphology and microflora caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens[J]. Fish Shellfish Immunol, 2013, 34(5): 1063-1070. doi: 10.1016/j.fsi.2013.01.015
    [38] 马启伟, 郭梁, 刘波, 等. 牛磺酸对卵形鲳鲹肠道微生物及免疫功能的影响[J]. 南方水产科学, 2021, 17(2): 87-96. doi: 10.12131/20200193
    [39] DAI J H, LI Y X, YANG P, et al. Citric acid as a functional supplement in diets for juvenile turbot, Scophthalmus maximus L. : effects on phosphorus discharge, growth performance, and intestinal health[J]. Aquaculture, 2018, 495: 643-653. doi: 10.1016/j.aquaculture.2018.04.004
    [40] BUTT R L, VOLKOFF H. Gut microbiota and energy homeostasis in fish[J]. Front Endocrinol, 2019, 10: 9. doi: 10.3389/fendo.2019.00009
    [41] SHEN J F, LIU H Y, TAN B P, et al. Effects of replacement of fishmeal with cottonseed protein concentrate on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2020, 26(4): 1119-1130. doi: 10.1111/anu.13069
    [42] 廖庆钊, 陈福艳, 覃雅, 等. 投喂乙醇假丝酵母对罗非鱼生长、免疫和肠道菌群的影响[J]. 南方水产科学, 2021, 17(5): 10-17. doi: 10.12131/20200258
    [43] YIN Z Y, LIU Q D, LIU Y T, et al. Early life intervention using probiotic Clostridium butyricum improves intestinal development, immune response, and gut microbiota in large yellow croaker (Larimichthys crocea) larvae[J]. Front Immunol, 2021, 12: 640767. doi: 10.3389/fimmu.2021.640767
    [44] RING Ø E, OLSEN R E, GIFSTAD T, et al. Prebiotics in aquaculture: a review[J]. Aquac Nutr, 2010, 16(2): 117-136. doi: 10.1111/j.1365-2095.2009.00731.x
    [45] HOSEINIFAR S H, ESTEBAN M A, CUESTA A, et al. Prebiotics and fish immune response: a review of current knowledge and future perspectives[J]. Rev Fish Sci Aquac, 2015, 23(4): 315-328. doi: 10.1080/23308249.2015.1052365
    [46] RODRIGUEZ J, HIEL S, NEYRINCK A M, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients[J]. Gut, 2020, 69(11): 1975-1987. doi: 10.1136/gutjnl-2019-319726
    [47] XUN P W, LIN H Z, WANG R X, et al. Effects of dietary lipid levels on growth performance, plasma biochemistry, lipid metabolism and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2021, 27(5): 1683-1698. doi: 10.1111/anu.13307
    [48] SHIN N R, WHON T W, BAE J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends Biotechnol, 2015, 33(9): 496-503. doi: 10.1016/j.tibtech.2015.06.011
    [49] 柴英辉, 高菲, 王金锋, 等. 仿刺参 (Apostichopus japonicus) 肠道菌群的地域性差异与共性研究[J]. 海洋与湖沼, 2019, 50(5): 1127-1137. doi: 10.11693/hyhz20190200044
    [50] ARON-WISNEWSKY J, GABORIT B, DUTOUR A, et al. Gut microbiota and non-alcoholic fatty liver disease: new insights[J]. Clin Microbiol Infect, 2013, 19(4): 338-348. doi: 10.1111/1469-0691.12140
    [51] PU G, LI P H, DU T R, et al. Adding appropriate fiber in diet increases diversity and metabolic capacity of distal gut microbiota without altering fiber digestibility and growth rate of finishing pig[J]. Front Microbiol, 2020, 11: 533. doi: 10.3389/fmicb.2020.00533
    [52] THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut Bacteroidetes: the food connection[J]. Front Microbiol, 2011, 2: 93.
    [53] PAONE P, CANI P D. Mucus barrier, mucins and gut microbiota: the expected slimy partners?[J]. Gut, 2020, 69(12): 2232-2243. doi: 10.1136/gutjnl-2020-322260
    [54] SPILKER T, VANDAMME P, LIPUMA J J. Identification and distribution of Achromobacter species in cystic fibrosis[J]. J Cyst Fibros, 2013, 12(3): 298-301. doi: 10.1016/j.jcf.2012.10.002
    [55] RYAN M P, PEMBROKE J T. Brevundimonas spp. : emerging global opportunistic pathogens[J]. Virulence, 2018, 9(1): 480-493. doi: 10.1080/21505594.2017.1419116
    [56] JOHNSON L N, HAN J Y, MOSKOWITZ S M, et al. Pandoraea bacteremia in a cystic fibrosis patient with associated systemic illness[J]. Pediatr Infect Dis J, 2004, 23(9): 881-882. doi: 10.1097/01.inf.0000136857.74561.3c
    [57] 梁超. 饲料中添加二甲酸钾、低聚木糖和菊粉对刺参的生长、免疫和抗灿烂弧菌感染能力的影响[D]. 青岛: 中国海洋大学, 2011: 67-68.
    [58] WANG Y, NAN X M, ZHAO Y G, et al. Consumption of supplementary inulin modulates milk microbiota and metabolites in dairy cows with subclinical mastitis[J]. Appl Environ Microbiol, 2022, 88(4): e0205921.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  15
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-04-22
  • 录用日期:  2022-04-28
  • 网络出版日期:  2022-08-30

目录

    /

    返回文章
    返回