Anesthetic effect and tissue oxidative injury for Litopenaeus vannamei by two anesthetics
-
摘要: 为明确丁香酚和MS-222对凡纳滨对虾 (Litopenaeus vannamei) 的麻醉效果及相同效果下造成的二次应激,为两种麻醉剂在凡纳滨对虾中的应用提供参考数据与实验依据。研究了不同质量浓度丁香酚 (20、30、40、60、80、100、120、140和160 mg·L−1) 和MS-222 (800、900、1 000、1 100、1 200、1 300、1 400、1 500和1 600 mg·L−1) 对体质量为 (14±3) g凡纳滨对虾的麻醉效果,以及相同效果下对其机体生理和组织形态的影响。结果表明:1) 丁香酚和MS-222的质量浓度分别为80和1 400 mg·L−1时,对虾在3 min内进入深度麻醉阶段,5 min内恢复正常;2) 使用这两种麻醉剂均会造成对虾的鳃和肝胰腺组织损伤,其中丁香酚组的鳃组织各项抗氧化指标早于MS-222组达到峰值;丁香酚组Caspase-3活性在麻醉复苏后6 h显著降低,而MS-222组则显著升高 (P<0.05);丁香酚组和MS-222组的Na+/K+-ATP酶活性显著降低 (P<0.05);组织形态分析显示两种麻醉剂均会引起对虾鳃和肝胰腺产生不同程度的变形或裂解损伤,而在麻醉复苏后6 h丁香酚组恢复正常。综上,丁香酚和MS-222对凡纳滨对虾均有麻醉效果,但MS-222所需浓度更高,且对机体造成的二次应激损伤更为严重。Abstract: To provide references for the application of two anesthetics in Litopenaeus vannamei, we studied the anesthetic effects of eugenol (20, 30, 40, 60, 80, 100, 120, 140, 160 mg·L−1) and MS-222 (800, 900, 1 000, 1 100, 1 200, 1 300, 1 400, 1 500, 1 600 mg·L−1) on L. vannamei with body mass of (14±3) g. Besides, we tested the secondary stress injury on the physiological functions and pathomorphologic changes by the two anesthetics. The results show that: 1) Eugenol of 80 mg·L−1and MS-222 of 1 400 mg·L−1 induced L. vannamei to enter the stage of deep anesthetic within 3 min, and return to the normal stage within 5 min. 2) The gills and hepatopancreas of L. vannamei were injured by the two anesthetics, and the antioxidant indexes of gills in the eugenol group reached the maximum value earlier than the MS-222 group. The Caspase-3 activity in the eugenol group decreased significantly after anesthesia recovery of 6 h, while that in the MS-222 group increased significantly (P<0.05). The Na+/K+-ATPase activity in both the groups decreased significantly (P<0.05). Pathomorphologic analysis shows that the two anesthetics could cause deformation or lysis of gills and hepatopancreas, and the eugenol group could recover after anesthesia recovery of 6 h. In conclusion, eugenol and MS-222 have anesthetic effects on L. vannamei, but the concentration of MS-222 is higher and the secondary stress damage to the body is more serious.
-
Key words:
- Litopenaeus vannamei /
- Eugenol /
- MS-222 /
- Anesthetic effect /
- Stress injury
-
图 1 丁香酚和MS-222麻醉对凡纳滨对虾鳃组织抗氧化酶活性影响
注:大写字母不同表示相同时间点上不同组间差异显著 (P<0.05);小写字母不同表示同组间不同时间点间差异显著 (P<0.05); 图2—图4同此。
Figure 1. Antioxidant capacity in gill tissue of L. vannamei exposed to combined stress of eugenol and MS-222
Note: Different uppercase letters indicate significant difference among different groups at the same time (P<0.05); different lowercase letters indicate significant difference among different time within the same group (P<0.05). The same case in Fig. 2–Fig. 4.
图 5 丁香酚和MS-222麻醉对凡纳滨对虾鳃部组织形态影响 (10×20倍)
注:a. 3 h对照组;b. 6 h对照组;c. 3 h丁香酚组;d. 6 h丁香酚组;e. 3 h MS-222组;f. 6 h MS-222组;图6同此。
Figure 5. Gill tissue of L. vannamei exposed to combined stress of eugenol and MS-222 (10×20 times)
Note: a. Control group at 3rd hour; b. Control group at 6th hour; c. Eugenol group at 3rd hour; d. Eugenol group at 6th hour; e. MS-222 group at 3rd hour; f. MS-222 group at 6th hour. The same case in Fig. 6.
表 1 麻醉与复苏阶段虾类行为特征
Table 1. Behavioral characteristics of shrimps at anaesthesia and recovery stages
状态 State 行为特征Behavioral characteristics 麻醉阶段Anaesthesia stage A0 正常 正常游动,对外界刺激反应迅速 A1 镇静 游动缓慢,对外界刺激反应迟钝 A2 轻度麻醉 游泳足缓慢摆动,对外界刺激反应微弱 A3 中度麻醉 游泳足轻微摆动,失去平衡,水底侧游 A4 深度麻醉 游泳足停止摆动,水底侧躺,无反应 A5 死亡 颚舟片摆动停止 复苏阶段 Recovery stage R1 轻度恢复 游泳足开始无规则摆动,对外界刺激无反应 R2 中度恢复 游泳足有规律摆动,外界刺激后有逃跑意识 R3 平衡恢复 恢复平衡,游动无规律 R4 正常 游动正常,对外界刺激反应灵敏 表 2 不同浓度丁香酚和MS-222对凡纳滨对虾的麻醉效果
Table 2. Anaesthesia and recovery effects of eugenol and MS-222 of different concentrations on L. vannamei
麻醉剂质量浓度Anesthetic mass concentration/ (mg·L−1) 进入不同麻醉阶段程度的时间Average time for reaching different anaesthesia stages/s 进入不同恢复阶段程度的时间Average time for reaching different recovery stages/s 复苏率Recovery rate/% 48 h后成活率Survival rate after 48 h/% A1 A2 A3 A4 A5 R1 R2 R3 R4 丁香酚Eugenol 20 87.6±24.3 182.1±20.7 — — — — — — — 100 100 30 86.8±15.6 156.2±33.9 — — — — — — — 100 100 40 55.7±4.6 126.8±33.8 132.7±4.1 — — 58.6±5.6 98.3±32.2 186.3±38.7 272.2±6.3 100 100 60 45.9±3.8 93.7±8.0 124.6±16.3 338.8±35.2 — 122.7±34 187.8±6.9 265.1±6.9 294.7±17.1 100 100 80 40.7±6.1 74.5±2.6 116.1±17.0 195.9±12.4 — 123.9±22.7 186.8±31.3 266.8±22.7 324.6±32.4 100 100 100 31.8±5.2 53.1±0.8 107.7±6.1 164.9±8.4 — 170.7±51.5 228.6±26.2 293.6±42.8 392.6±50.5 100 100 120 19.6±3.1 89.9±17.8 107.4±10.9 160.8±26.5 — 238.6±84.6 346.4±16.2 404.2±24.6 438.2±26.3 100 100 140 34.4±0.8 81.7±21.3 103.0±9.0 145.5±7.4 — 218.9±3.68 280.9±5.6 343.9±13.6 440.5±32.9 83.3 66.7 160 27.6±2.1 50.2±2.6 87.0±26.2 121.0±32.4 — 367.1±26.4 438.6±22.4 528.8±38.9 652.9±82.0 50 33.3 MS-222 800 74.9±3.5 237.5±24.9 — — — — — — — 100 100 900 78.3±21.1 200.5±22.8 632.4±68.4 — — — — 26.7±11.9 99.6±20.1 100 100 1 000 84.5±12.9 187.4±17.2 289.3±29.7 454.0±38.6 — 27.7±6.3 55.6±7.1 156.9±13.7 193.0±10.4 100 100 1 100 55.0±5.8 165.5±18.7 269.7±25.8 391.1±17.7 — 41.7±6.9 104.0±13.7 195.7±13.6 269.0±42.2 100 100 1 200 69.2±6.8 140.4±27.8 213.1±24.8 307.7±23.2 — 39.1±7.3 99.3±17.5 195.6±25.8 256.5±21.1 100 100 1 300 60.0±7.0 117.9±30.2 189.4±26.5 292.3±13.6 — 52.1±9.8 94.6±10.2 202.5±20.6 311.5±24.1 100 100 1 400 35.0±4.3 77.6±11.7 122.8±29.5 171.3±16.5 — 52.6±9.5 91.5±14.2 175.5±18.2 312.7±16.0 100 100 1 500 33.8±10.1 66.4±9.8 106.3±22.5 155.6±22.1 — 46.5±3.8 108.7±20.6 187.4±27.6 331.1±39.0 100 100 1 600 — 61.5±6.1 118.8±8.7 143.3±9.7 — 89.9±13.2 172.0±20.3 333.6±16.2 499.9±16.5 83.3 66.7 注:—. 未观察到相应的状态。 Note: —. No corresponding state was observed. -
[1] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 21-36. [2] 徐子涵, 茅林春. 虾保活运输的关键技术及装备研究进展[J]. 食品工业科技, 2018, 39(9): 306-310. [3] 米红波, 侯晓荣, 茅林春. 鱼虾类保活运输的研究与应用进展[J]. 食品科学, 2013, 34(13): 365-369. doi: 10.7506/spkx1002-6630-201313076 [4] MARKING L L, MEYER F P. Are better anesthetics needed in fisheries?[J]. Fisheries, 1985, 10(6): 2-5. doi: 10.1577/1548-8446(1985)010<0002:ABANIF>2.0.CO;2 [5] Food and Drug Administration. Guidance for industry 150: status of clove oil and eugenol for anesthesia of fish [EB/OL]. (2007-4-24). https://www.fda.gov/media/69954/download. [6] 杨洁, 朱晓玲. 丁香酚在水产品中的残留及风险评估研究进展[J]. 食品安全质量检测学报, 2020, 11(18): 6523-6529. [7] HIKASA Y, TAKASE K, OGASAWARA T, et al. Anesthesia and recovery with tricaine methanesulfonate, eugenol and thiopental sodium in the carp, Cyprinus carpio[J]. Jpn J Vet Sci, 1986, 48(2): 341-351. doi: 10.1292/jvms1939.48.341 [8] 王文豪, 董宏标, 孙永旭, 等. MS-222 和丁香酚在大口黑鲈幼鱼模拟运输中的麻醉效果[J]. 南方水产科学, 2018, 14(6): 52-58. doi: 10.12131/20180100 [9] 杜浩, 危起伟, 杨德国, 等. MS-222、丁香油、苯唑卡因对养殖美洲鲥幼鱼的麻醉效果[J]. 大连海洋大学学报, 2016, 22(1): 20-26. [10] 郝长杰, 庄平, 赵峰, 等. MS 222 和丁香酚对暗纹东方鲀幼鱼麻醉效果的比较研究[J]. 海洋渔业, 2019, 41(5): 530-538. [11] 张丽, 汪之和. MS-222 对大黄鱼成鱼麻醉效果的研究[J]. 湖南农业科学, 2010, 18(14): 38-40. doi: 10.3969/j.issn.1006-060X.2010.14.014 [12] COYLE S D, DASGUPTA S, TIDWELL J H, et al. Comparative efficacy of anesthetics for the freshwater prawn Macrobrachiurn rosenbergii[J]. J World Aquacult Soc, 2005, 36(3): 282-290. [13] 徐德峰, 吴嘉鑫, 孙力军, 等. 丁香酚和MS-222对凡纳滨对虾麻醉效果比较[J]. 广东海洋大学学报, 2021, 41(5): 44-52. doi: 10.3969/j.issn.1673-9159.2021.05.006 [14] 蔡诤, 董宏标, 王军, 等. 浓度和温度对丁香酚麻醉日本囊对虾效果的影响[J]. 海洋科学, 2012, 36(3): 29-36. [15] 徐滨, 魏开金, 朱祥云, 等. MS-222 和丁香酚对克氏原螯虾幼虾耗氧率, 排氨率及窒息点的影响[J]. 大连海洋大学学报, 2018, 33(4): 455-459. [16] 彭勤, 黄和, 赵子科. 丁香酚麻醉剂在凡纳滨对虾中残留消除的研究[J]. 广东海洋大学学报, 2018, 38(5): 64-70. doi: 10.3969/j.issn.1673-9159.2018.05.010 [17] BARBAS L A L, PEREIRA-CARDONA P M, MALTEZ L C, et al. Anaesthesia and transport of juvenile tambaqui Colossoma macropomum (Cuvier, 1818) with tricaine methane-sulphonate: implications on secondary and oxidative stress responses[J]. J Appl Ichthyol, 2017, 33(4): 720-730. doi: 10.1111/jai.13382 [18] 平洪领, 史会来, 余方平, 等. MS-222 对日本对虾麻醉效果的研究[J]. 水产养殖, 2018, 39(4): 1-4. doi: 10.3969/j.issn.1004-2091.2018.04.001 [19] TSUCHIYA H. Anesthetic agents of plant origin: a review of phytochemicals with anesthetic activity[J]. Molecules, 2017, 22(8): 1369-1403. doi: 10.3390/molecules22081369 [20] SINGH A K, KUMAR S, VINAYAK M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions[J]. Inflamm Res, 2018, 67(8): 633-654. doi: 10.1007/s00011-018-1156-5 [21] BUTTERWORTH J F, STRICHARTZ G R. Molecular mechanisms of local anesthesia: a review[J]. Anesthesiology, 1990, 72(4): 711-734. doi: 10.1097/00000542-199004000-00022 [22] JAVAHERY S, NEKOUBIN H, MORADLU A H. Effect of anaesthesia with clove oil in fish[J]. Fish Physiol Biochem, 2012, 38(6): 1545-1552. doi: 10.1007/s10695-012-9682-5 [23] 孙盛明, 祝孟茹, 潘方艳, 等. 低氧对甲壳动物的影响及其分子调控研究进展[J]. 水产学报, 2020, 44(4): 690-704. [24] 何新龙, 傅洪拓, 龚永生, 等. 丁香酚对日本沼虾麻醉效果的研究[J]. 中国农学通报, 2007, 23(9): 620-623. doi: 10.3969/j.issn.1000-6850.2007.09.132 [25] KOHEN R, NYSKA A. Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification[J]. Toxicol Pathol, 2002, 30(6): 620-650. doi: 10.1080/01926230290166724 [26] LEI Y, SUN Y, WANG X, et al. Effect of dietary phosphorus on growth performance, body composition, antioxidant activities and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis)[J]. Aquaculture, 2021, 531: 735856. doi: 10.1016/j.aquaculture.2020.735856 [27] WANG W, DONG H, SUN Y, et al. Immune and physiological responses of juvenile Chinese sea bass (Lateolabrax maculatus) to eugenol and tricaine methanesulfonate (MS-222) in gills[J]. Aquac Rep, 2020, 18: 100554. doi: 10.1016/j.aqrep.2020.100554 [28] 刘晓华. 谷胱甘肽对凡纳滨对虾抗氧化防御的调控机理[D]. 武汉: 华中农业大学, 2010: 41-48. [29] 熊大林, 段亚飞, 徐敬明, 等. 凡纳滨对虾鳃组织对高温和氨氮胁迫的生理响应[J]. 南方农业学报, 2020, 51(9): 2296-2303. doi: 10.3969/j.issn.2095-1191.2020.09.031 [30] 相启森, 孟旭, 乔燕, 等. 鼠尾草酸对自由基诱导蛋白质氧化损伤的保护作用[J]. 食品科学, 2013, 34(15): 281-284. doi: 10.7506/spkx1002-6630-201315058 [31] RAJAKUMAR D V, RAO M N A. Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers[J]. Biochem Pharmacol, 1993, 46(11): 2067-2072. doi: 10.1016/0006-2952(93)90649-H [32] SCATENA R, BOTTONI P, BOTTA G, et al. The role of mitochon dria in pharmacotoxicology: a reevaluation of an old, newly emerging topic[J]. Am J Physiol Cell Physiol, 2007, 293(1): 12-21. doi: 10.1152/ajpcell.00314.2006 [33] 吴任, 谢数涛, 孙勇, 等. 凡纳滨对虾热休克蛋白70的原核高效表达[J]. 中国水产科学, 2006, 13(2): 305-309. doi: 10.3321/j.issn:1005-8737.2006.02.022 [34] 贾旭颖, 张丹, 路允良, 等. 温度突变和非离子氨胁迫对淡水养殖凡纳滨对虾cyt-C和caspase-3的影响[J]. 中国水产科学, 2014, 21(4): 700-710. [35] DUAN Y, WANG Y, DONG H, et al. Physiological and immune response in the gills of Litopenaeus vannamei exposed to acute sulfide stress[J]. Fish Shellfish Immunol, 2018, 81: 161-167. doi: 10.1016/j.fsi.2018.07.018 [36] 王文豪. 2种麻醉剂对中国花鲈麻醉效应、损伤机理及其防护研究[D]. 上海: 上海海洋大学, 2020: 40-44. [37] POUNDER K C, MITCHELL J L, THOMSON J S, et al. Physiological and behavioural evaluation of common anaesthesia practices in the rainbow trout[J]. Appl Anim Behav Sci, 2018, 199: 94-102. doi: 10.1016/j.applanim.2017.10.014 [38] SOIVIO A, NYHOLM K, HUHTI M. Effects of anaesthesia with MS-222, neutralized MS-222 and benzocaine on the blood constituents of rainbow trout, Salmo gairdneri[J]. J Fish Biol, 1977, 10(1): 91-101. doi: 10.1111/j.1095-8649.1977.tb04045.x [39] 苏家齐, 祝华萍, 朱长波, 等. 盐度和钠离子/钾离子对凡纳滨对虾幼虾存活与组织结构的影响[J]. 南方水产科学, 2021, 17(5): 45-53. doi: 10.12131/20210011 [40] 陶易凡, 强俊, 王辉, 等. 低pH胁迫对克氏原螯虾鳃和肝胰腺酶活力及组织结构的影响[J]. 中国水产科学, 2016, 23(6): 1279-1289. [41] 洪美玲, 陈立侨, 顾顺樟, 等. 氨氮胁迫对中华绒螯蟹免疫指标及肝胰腺组织结构的影响[J]. 中国水产科学, 2007, 14(3): 412-418. doi: 10.3321/j.issn:1005-8737.2007.03.010 -