Spatial pattern characteristics of albacore tuna resources at different spatial scales in South Pacific
-
摘要: 长鳍金枪鱼 (Thunnus alalunga) 是延绳钓渔业主要捕捞目标物种,占金枪鱼年渔获量的1/3。南太平洋的长鳍金枪鱼资源丰富,探究其渔业资源的空间格局特征,分析是否存在空间尺度差异,对其渔业资源的合理利用和保护具有重要意义。根据2015—2019年中国大陆延绳钓渔捞日志数据,按季度以3种空间尺度进行聚合 (1°、2°和5°),以及中西太平洋渔业委员会提供的5°网格数据,分别计算其空间格局特征,以比较不同空间尺度下资源分布格局的差异。结果表明:1) 南太平洋长鳍金枪鱼资源空间格局方向特征的椭圆扁率大,所有尺度的空间格局均呈现显著的东西向分布,且资源的空间格局特征 (资源的分布范围、扁率、分布方位角等) 呈明显的季节性波动特征;2) 同源的3种不同尺度数据反映的资源空间格局差异性较小,而不同源数据反映的则差异性较大;3) 在同尺度5°网格数据中,相较于中西太平洋委员会数据,渔捞日志数据中空间格局的资源中心更偏东南,偏东约10°经度;4) 采用较大尺度聚合的数据反映出的资源空间聚集特征更强,且不同尺度数据得到的资源空间热点区域有一定差异。Abstract: Albacore tuna (Thunnus alalunga) is the main target species of longline fishery, accounting for 1/3 of the annual catch of tuna. Since the fishery resources of T. alalunga are rich in South Pacific, to explore the spatial pattern characteristics of its fishery resources in that sea area, and to analyze whether there are differences in the spatial scale are important for the rational utilization and protection of its fishery resources in South Pacific. We aggregated the longline fishing logs of the Chinese mainland from 2015 to 2019 at three spatial scales (1°, 2° and 5°) by season, and calculated their spatial pattern characteristics based on the 5° grid data from Western and Central Pacific Fisheries Commission (WCPFC). The results show that: 1) The spatial pattern of T. alalunga resources in the South Pacific was characterized by great ellipticity, and there was a significant eastwest distribution in the direction of the spatial pattern at all scales. The spatial pattern characteristics of resources (Distribution range, flatness, azimuth, etc.) had similar and obvious seasonal fluctuation characteristics. 2) The spatial pattern of resources obtained from three different scales of the same origin had a small difference, while that from different sources had a great difference. 3) For the same scale of 5° grid data, the resource center of the spatial pattern in China was more southeast and about 10° east in longitude than that of the data from the WCPFC. 4) Data aggregated at larger scales reflect stronger spatial aggregation characteristics of resources. Besides, the hot spots of spatial pattern obtained from different scale data of same origin were different to some extent.
-
Key words:
- Thunnus alalunga /
- Spatial pattern /
- Standard deviation ellipse /
- Hot spot analysis /
- South Pacific
-
表 1 南太平洋长鳍金枪鱼延绳钓渔业船次
Table 1. Number of vessels of longline fishery of T. alalunga in South Pacific
年份Year 船次 (CN)Number of vessels 船次 (WCPFC)Number of vessels 2015 189 1 752 2016 138 1 695 2017 159 1 764 2018 150 1 764 2019 156 1 817 表 2 南太平洋长鳍金枪鱼资源空间格局的全局分布聚集性显著性检验
Table 2. Significance test of global distribution and aggregation of spatial pattern of T. alalunga in South Pacific
统计时间
Statistical time中国大陆1°
CN-1中国大陆2°
CN-2中国大陆5°
CN-5中西太平洋渔业委员会5°
WCPFC-5I Z_score I Z_score I Z_score I Z_score 第一季度
Quarter 10.032 3 3.975 1 0.236 6 15.015 6 0.337 4 18.301 4 0.628 7 43.204 7 第二季度
Quarter 20.032 1 2.184 4 0.047 3 10.867 5 0.371 1 17.594 5 0.563 7 47.969 7 第三季度
Quarter 30.042 2 6.137 2 0.064 5 20.338 6 0.487 0 30.940 6 0.614 7 50.730 2 第四季度
Quarter 40.038 1 6.675 1 0.046 4 20.380 1 0.532 6 29.146 5 0.637 4 49.767 8 注:Z得分的临界值为1.65、1.96和2.58分别对应的置信度为90%、95%和99%。Note: The critical values of Z score are 1.65, 1.96 and 2.58, respectively, with confidence levels of 90%, 95% and 99%. -
[1] PILLING G M, HARLEY S J, WILLIAMS P, et al. Trends in the south Pacific albacore longline and troll fisheries (WCPFC-SC14-2018/SA-IP-08)[R]. 14th Regular Session of the Scientific Committee, Busan, Republic of Korea, 8-16 August, 2018. [2] NIKOLIC N, MORANDEAU G, HOARAU L, et al. Review of albacore tuna, Thunnus alalunga, biology, fisheries and management[J]. Rev Fish Biol Fish, 2017(27): 775-810. [3] 牛明香, 王俊, 黄海中, 等. 黄海中南部越冬鳀空间格局的年际变化[J]. 海洋环境科学, 2019, 38(2): 263-271. doi: 10.12111/j.cnki.mes20190215 [4] YANG X P, JIA Y T, WANG Q H, et al. Space-time evolution of the ecological security of regional urban tourism: the case of Hubei Province, China[J]. Environ Monit Assess, 2021, 193(9): 1-20. [5] 侯娟, 周为峰, 樊伟, 等. 基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究[J]. 南方水产科学, 2020, 16(5): 42-50. doi: 10.12131/20200022 [6] 毛江美, 陈新军, 余景. 基于神经网络的南太平洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2016, 38(10): 34-43. [7] TREMBLAY B L, HAMPTON J, MCKECHNIE S, et al. Stock assessment of South Pacific albacore tuna (WCPFC-SC14-2018/SA-WP-05) [R]. Busan, Republic of Korea: The Pacific Community (SPC), 2018: 8-16. [8] 安树伟, 常瑞祥. 中国沿海地区生产性服务业与制造业空间关系演变研究——基于113个城市面板数据的分析[J]. 中国软科学, 2017(11): 101-110. doi: 10.3969/j.issn.1002-9753.2017.11.010 [9] PING J L, GREEN C J, ZARTMAN R E, et al. Exploring spatial dependence of cotton yield using global and local autocorrelation statistics[J]. Field Crops Res, 2004, 89(2): 219-236. [10] ESRI帮助文档. 空间自相关 (Global Moran's I) 的工作原理[EB/OL]. [2022-07-04]. https://desktop.arcgis.com/zh-cn/arcmap/latest/tools/spatial-statistics-toolbox/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm. [11] MUHLING B A, LAMKIN J T, ALEMANY F, et al. Reproduction and larval biology in tunas, and the importance of restricted area spawning grounds[J]. Rev Fish Biol Fisher, 2017, 27(4): 697-732. doi: 10.1007/s11160-017-9471-4 [12] ESRI帮助文档. 热点分析 (Getis-Ord Gi*) 的工作原理. [EB/OL]. [2022-07-04]. https://desktop.arcgis.com/zh-cn/arcmap/10.3/tools/spatial-statistics-toolbox/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm. [13] BRIAND K, MOLONY B, LEHODEY P. A study on the variability of the albacore (Thunnus alalunga) longline catch rates in the Southwest Pacific Ocean[J]. Fish Oceanogr, 2011, 20(6): 517-529. doi: 10.1111/j.1365-2419.2011.00599.x [14] 樊伟, 张晶, 周为峰. 南太平洋长鳍金枪鱼延绳钓渔场与海水表面温度的关系分析[J]. 大连水产学院学报, 2007, 22(5): 366-371. [15] 闫敏, 张衡, 伍玉梅, 等. 2011年南太平洋长鳍金枪鱼渔场时空分布及其与主要海洋环境变化特征[J]. 渔业信息与战略, 2015, 30(2): 119-127. doi: 10.13233/j.cnki.fishis.2015.02.007 [16] 周甦芳, 樊伟. 太平洋延绳钓长鳍金枪鱼及渔场水温分析[J]. 海洋湖沼通报, 2006(2): 38-43. doi: 10.3969/j.issn.1003-6482.2006.02.007 [17] 张嘉容, 杨晓明, 田思泉. 基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测[J]. 中国水产科学, 2020, 27(10): 1222-1233. [18] 魏广恩, 陈新军. 不同环境模态下空间分辨率对北太平洋柔鱼CPUE标准化的影响[J]. 海洋科学, 2021, 45(4): 147-158. doi: 10.11759/hykx20190722003 [19] 闫敏, 张衡, 伍玉梅, 等. 基于GAM模型研究时空及环境因子对南太平洋长鳍金枪鱼渔场的影响[J]. 大连海洋大学学报, 2015, 30(6): 681-685. doi: 10.16535/j.cnki.dlhyxb.2015.06.018 [20] 张嘉容, 杨晓明, 戴小杰, 等. 南太平洋长鳍金枪鱼延绳钓渔获率与环境因子的关系研究[J]. 南方水产科学, 2020, 16(1): 69-77. doi: 10.12131/20190178 [21] 郭刚刚, 张胜茂, 樊伟, 等. 南太平洋长鳍金枪鱼垂直活动水层空间分析[J]. 南方水产科学, 2016, 12(5): 123-130. doi: 10.3969/j.issn.2095-0780.2016.05.016 [22] 官文江, 陈新军, 高峰, 等. GLM 模型和回归树模型在CPUE标准化中的比较分析[J]. 上海海洋大学学报, 2014, 23(1): 123-130. [23] HARLEY S J, MYERS R A, DUNN A. Is catch-per-unit-effort proportional to abundance?[J]. Can J Fish Aquat Sci, 2001, 58(9): 1760-1772. doi: 10.1139/f01-112 [24] YE Y, DENNIS D. How reliable are the abundance indices derived from commercial catch-effort standardization?[J]. Can J Fish Aquat Sci, 2009, 66(7): 1169-1178. doi: 10.1139/F09-070 [25] 张勋, 张禹, 周爱忠, 等. 我国远洋渔业渔具发展概况[J]. 中国农业科技导报, 2013, 15(6): 16-19. doi: 10.3969/j.issn.1008-0864.2013.06.03 [26] 刘世禄, 冯小花, 陈辉. 关于加快发展我国远洋渔业的战略思考[J]. 渔业现代化, 2014, 41(4): 63-67, 2. doi: 10.3969/j.issn.1007-9580.2014.04.014 [27] 张衡, 张瑛瑛, 叶锦玉. 中国远洋渔业发展的新思路及建议[J]. 渔业信息与战略, 2019, 34(1): 30-35. doi: 10.13233/j.cnki.fishis.2019.01.005 [28] ASHLEY J W, VALERIE A, SIMON J N, et al. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean[J]. Deep-Sea Res II, 2015, 113: 154-169. doi: 10.1016/j.dsr2.2014.03.010 [29] 宋利明, 谢凯, 赵海龙, 等. 库克群岛海域海洋环境因子对长鳍金枪鱼渔获率的影响[J]. 海洋通报, 2017, 36(1): 96-106. doi: 10.11840/j.issn.1001-6392.2017.01.013 [30] 原作辉, 杨东海, 樊伟, 等. 基于卫星AIS的中西太平洋金枪鱼延绳钓渔场分布研究[J]. 海洋渔业, 2018, 40(6): 649-659. doi: 10.3969/j.issn.1004-2490.2018.06.002 [31] 刘禹希, 王学锋, 吕少梁, 等. 南海北部海域大眼鲷空间自相关性[J]. 水产学报, 2021, 45(8): 1361-1373. [32] 江承旭. 斐济专属经济区长鳍金枪鱼渔场分析[D]. 上海: 上海海洋大学, 2017: 38-39. [33] CHILDERS J, BETCHER A. Summary of the 2005 U. S. North and South Pacific albacore troll fisheries[R/OL]. [2022-1-25]. http://swfsc.noaa.gov/uploadedFiles/Divisions/FRD/Large_Pelagics/Albacore/SUMMARY2005. [34] LU H J, LEE K T, CHENG H L. On the relationship between El Niño/Southern oscillation and South Pacific albacore[J]. Fish Res, 1998, 39(1): 1-7. doi: 10.1016/S0165-7836(98)00174-X [35] 杨晓明, 戴小杰, 田思泉, 等. 中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性[J]. 生态学报, 2014, 34(13): 3771-3778. -