留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5种因子对赤红球菌HDRR2Y去除氨氮和亚硝酸盐效应的影响

徐煜 胡晓娟 张淞 徐武杰 苏浩昌 文国樑 曹煜成

徐煜, 胡晓娟, 张淞, 徐武杰, 苏浩昌, 文国樑, 曹煜成. 5种因子对赤红球菌HDRR2Y去除氨氮和亚硝酸盐效应的影响[J]. 南方水产科学, 2023, 19(1): 67-74. doi: 10.12131/20220044
引用本文: 徐煜, 胡晓娟, 张淞, 徐武杰, 苏浩昌, 文国樑, 曹煜成. 5种因子对赤红球菌HDRR2Y去除氨氮和亚硝酸盐效应的影响[J]. 南方水产科学, 2023, 19(1): 67-74. doi: 10.12131/20220044
XU Yu, HU Xiaojuan, ZHANG Song, XU Wujie, SU Haochang, WEN Guoliang, CAO Yucheng. Effect of five factors on removing ammonia nitrogen and nitrite by Rhodococcus ruber HDRR2Y fermentation[J]. South China Fisheries Science, 2023, 19(1): 67-74. doi: 10.12131/20220044
Citation: XU Yu, HU Xiaojuan, ZHANG Song, XU Wujie, SU Haochang, WEN Guoliang, CAO Yucheng. Effect of five factors on removing ammonia nitrogen and nitrite by Rhodococcus ruber HDRR2Y fermentation[J]. South China Fisheries Science, 2023, 19(1): 67-74. doi: 10.12131/20220044

5种因子对赤红球菌HDRR2Y去除氨氮和亚硝酸盐效应的影响

doi: 10.12131/20220044
基金项目: 国家重点研发计划项目 (2020YFD0900401);广东省重点领域研发计划项目 (2021B0202040001);海南省自然科学基金项目 (2022CXTD265);中国水产科学研究院基本科研业务费项目 (2020TD54);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金 (2021SD08);国家现代农业产业技术体系 (CARS-48);广东省现代农业产业技术体系创新团队建设专项资金 (2019KJ149)
详细信息
    作者简介:

    徐煜:徐 煜 (1987—),男,助理研究员,硕士,研究方向为对虾养殖技术与水质调控。E-mail: xuyublq@163.com

    通讯作者:

    曹煜成 (1979—),男,研究员,博士,研究方向为水产健康养殖及养殖生态环境调控与修复。E-mail: cyc_715@163.com

  • 中图分类号: S 917.1

Effect of five factors on removing ammonia nitrogen and nitrite by Rhodococcus ruber HDRR2Y fermentation

  • 摘要: 赤红球菌 (Rhodococcus ruber) 是常见的污水、废水处理微生物,为探究环境因子对赤红球菌HDRR2Y去除氨氮 (${\rm{NH}}_4^{^{ +}} $-N)和亚硝酸盐 (${\rm{NO}}_2^{^{ -}} $-N) 效应的影响,将HDRR2Y菌株发酵液添加至含有高浓度${\rm{NH}}_4^{^{ +}} $-N或${\rm{NO}}_2^{^{ -}} $-N的养殖水体中,通过国标法检测氨氮和亚硝酸盐浓度的变化,检验菌株培养液去除氨氮及亚硝酸盐的效果。按照温度、转速、盐度、接种菌量、底物浓度 (氨氮和亚硝酸盐) 5个因素进行Plackett-Burman实验设计,探讨这些因子对赤红球菌去除氨氮和亚硝酸盐效应的影响。结果显示,发酵过程中,菌株HDRR2Y浓度在36 h内从初始的5×104 CFU·mL−1增至4.08×109 CFU·mL−1。添加菌株培养液后,养殖水体氨氮质量浓度从初始的15 mg·L−1降至5.56 mg·L−1,去除率为62.96%;亚硝酸盐质量浓度从15 mg·L−1降至6.95 mg·L−1,去除率为59.37%。5种因子中,温度和氨氮浓度对菌株HDRR2Y去除氨氮影响最显著 (P<0.05),影响权重程度依次为:温度>氨氮浓度>转速>菌量>盐度;温度和转速是影响去除亚硝酸盐最显著的两个因子 (P<0.05),权重程度依次为:温度>转速>盐度>亚硝酸盐浓度>菌量。可见,菌株HDRR2Y培养液具有良好的去除氨氮、亚硝酸盐的作用,且温度是影响HDRR2Y去除氨氮、亚硝酸盐效率的最显著因子。
  • 图  1  菌株HDRR2Y菌浓度变化

    Figure  1.  Bacterial concentration change of strain HDRR2Y

    图  2  菌株HDRR2Y在发酵过程中的形态

    Figure  2.  Morphology of strain HDRR2Y during fermentation

    图  3  赤红球菌HDRR2Y对养殖水体氨氮和亚硝酸盐作用效果

    Figure  3.  Effect of HDRR2Y on ammonia and nitrite nitrogen in aquaculture water

    表  1  Plackett-Burman实验因素及与水平设计

    Table  1.   Factors and levels design of Plackett-Burman

    因素 Factor水平 Level
    −11
    A:菌浓度
    Bacterial concentration/(CFU·mL−1)
    104107
    B:底物 (氨氮/亚硝酸盐) 质量浓度
    Substrate concentration
    (Ammonia nitrogen/Nitrite)/(mg·L−1)
    1530
    C:盐度 Salinity/‰1530
    D:转速 Rotating speed/(r·min−1)150225
    E:温度 Temperature/℃2030
    下载: 导出CSV

    表  2  Plackett-Burman设计

    Table  2.   Plackett-Burman experimental design

    序号 No.A:菌浓度
    Bacterial concentration
    B:底物 (氨氮/
    亚硝酸盐) 浓度
    Substrate
    concentration
    (Ammonia nitrogen/Nitrite)
    C:盐度
    Salinity
    D:转速
    Rotating speed
    E:温度Temperature
    11−1−1−11
    21−1111
    31−111−1
    4−11−111
    5−111−11
    6−1−1−11−1
    7−1−11−11
    811−1−1−1
    9−1−1−1−1−1
    10−1111−1
    1111−111
    12111−1−1
    下载: 导出CSV

    表  3  养殖水体中氨氮和亚硝酸盐去除率

    Table  3.   Removal rate of ammonia nitrogen and nitrite in aquaculture water

    被测指标
    Measured index
    时间
    Time
    去除率 Removal rate/%
    对照组 GC加菌组 GH
    氨氮 NH4 +-N 第3天 −5.16±6.87a 62.92±1.53b
    第7天 −4.06±7.31a 57.50±2.16b
    亚硝酸盐 NO2 -N 第3天 −1.43±2.10a 59.37±2.49b
    第7天 −4.92±1.41a 56.36±1.67b
    注:同行数据的不同字母代表对照组和加菌组差异显著 (P<0.05)。 Note: Values with different letters within the same column indicate significant difference (P<0.05).
    下载: 导出CSV

    表  4  Plackett-Burman实验底物去除率

    Table  4.   Removal rate of substrate in Plackett-Burman experiment

    序号
    No.
    Y1:氨氮去除率
    Removal rate of ammonia nitrogen/%
    Y2:亚硝酸盐去除率
    Removal rate of nitrite/%
    148.442.5
    251.336.6
    336.240.2
    452.447.1
    553.636.8
    642.542.9
    743.939.9
    840.732.5
    931.643.7
    1043.838.7
    1159.353.4
    1245.230.7
    下载: 导出CSV

    表  5  Plackett-Burman实验因素水平与回归方程方差分析 (底物为氨氮)

    Table  5.   Plackett-Burman's experimental factor level and ANOVA of regression equation (Substrate is ammonia nitrogen)

    因素
    Factor
    平方和
    Sum of squares
    自由度
    df
    均方
    Mean square
    FP>F显著性
    Significance
    重要性排序
    Importance ranking
    模型 Model591.885118.3810.090.007 0**
    A:菌浓度
    Bacterial concentration/(CFU·mL−1)
    14.74114.741.260.305 24
    B:氨氮质量浓度
    Ammonia nitrogen mass concentration/
    (mg·L−1)
    140.771140.7712.000.013 4*2
    C:盐度 Salinity/‰0.067510.067 50.005 80.942 05
    D:转速 Rotating speed/(r·min−1)40.70140.703.470.111 93
    E:温度 Temperature/℃395.601395.6033.710.001 1*1
    残留误差 Residual error70.41611.74
    总差 Total difference662.2911
    注:判定系数R2=0.893 7;*. 差异显著 (P<0.05);**. 差异极显著( P<0.001)。 Note: Determination coefficient (R2)= 0.893 7; *. Significant difference (P<0.05); **. Very significant difference (P<0.001).
    下载: 导出CSV

    表  6  Plackett-Burman实验因素水平与回归方程方差分析 (底物为亚硝酸盐)

    Table  6.   Plackett-Burman's experimental factor level and ANOVA of regression equation (Substrate is nitrite)

    因素
    Factor
    平方和
    Sum of squares
    自由度
    df
    均方
    Mean
    square
    FP>F显著性
    Significance
    重要性排序
    Importance
    ranking
    模型 Model 340.26 5 68.05 4.96 0.038 2 *
    A:菌浓度
    Bacterial concentration/(CFU·mL−1)
    7.05 1 7.05 0.514 5 0.500 2 5
    B:氨氮质量浓度
    Ammonia nitrogen mass concentration/(mg·L−1)
    8.00 1 8.00 0.583 8 0.473 8 4
    C:盐度 Salinity/‰ 11.21 1 11.21 0.817 9 0.400 6 3
    D:转速 Rotating speed/(r·min−1) 152.65 1 152.65 11.13 0.015 7 * 2
    E:温度 Temperature/℃ 161.33 1 161.33 11.77 0.014 0 * 1
    残留误差 Residual error 82.26 6 13.71
    总差 Total difference 422.52 11
    注:判定系数R2=0.8053;*. 差异显著 (P<0.05)。 Note: Determination coefficient (R2)= 0.8053; *. Significant difference (P<0.05).
    下载: 导出CSV
  • [1] XU Z, CAO J, QIN X, et al. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and tissue structure in fish exposed to ammonia nitrogen: a review[J]. Animals, 2021, 11(11): 3304. doi: 10.3390/ani11113304
    [2] LIANG Q, DONG W, WANG F, et al. Ficus hirta Vahl. promotes antioxidant enzyme activity under ammonia stress by inhibiting miR-2765 expression in Penaeus vannamei[J]. Ecotoxicol Environ Saf, 2021, 228: 112989. doi: 10.1016/j.ecoenv.2021.112989
    [3] ZHAO C, XU J, XU X, et al. Organ-specific responses to total ammonia nitrogen stress on juvenile grass carp (Ctenopharyngodon idellus)[J]. Environ Sci Pollut Res Int, 2019, 26(11): 10826-10834. doi: 10.1007/s11356-019-04524-4
    [4] WANG J, TANG H, ZHANG X, et al. Mitigation of nitrite toxicity by increased salinity is associated with multiple physiological responses: a case study using an economically important model species, the juvenile obscure puffer (Takifugu obscurus)[J]. Environ Pollut, 2018, 232: 137-145. doi: 10.1016/j.envpol.2017.09.026
    [5] VALENCI A-CASTAÑEDA G, FRIAS-ESPERICUETA M G, VANEGAS-PÉREZ R C, et al. Acute toxicity of ammonia, nitrite and nitrate to shrimp Litopenaeus vannamei postlarvae in low-salinity water[J]. Bull Environ Contam Toxicol, 2018, 101(2): 229-234. doi: 10.1007/s00128-018-2355-z
    [6] LI X L, MARELLA T K, TAO L, et al. The application of ceramsite ecological floating bed in aquaculture: its effects on water quality, phytoplankton, bacteria and fish production[J]. Water Sci Technol, 2018, 77(11): 2742-2750. doi: 10.2166/wst.2018.187
    [7] HU X J, CAO Y C, WEN G L, et al. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J]. Aquac Res, 2016, 48(6): 1-15.
    [8] 胡晓娟, 文国梁, 李卓佳, 等. 养殖中后期高位池对虾水体微生物群落结构及水体理化因子[J]. 生态学杂志, 2018, 37(1): 171-178.
    [9] 胡晓娟, 文国樑, 田雅洁, 等. 不同培养条件下菌株NB5对氨氮的去除效果研究[J]. 南方水产科学, 2020, 16(6): 89-96. doi: 10.12131/20200061
    [10] 信艳杰, 胡晓娟, 曹煜成, 等. 光合细菌菌剂和沼泽红假单胞菌对实验水体氮磷营养盐和微生物群落的影响[J]. 南方水产科学, 2019, 15(1): 31-41. doi: 10.12131/20180144
    [11] 熊瑶, 刘怡霞, 刘燕, 等. 锦鲤和锦鲫类养殖水体中硝化细菌的富集和分离培养[J]. 水产科技情报, 2018, 45(1): 25-29. doi: 10.16446/j.cnki.1001-1994.2018.01.006
    [12] 张达娟, 张树林, 戴伟, 等. 凡纳滨对虾养殖池塘硝化细菌的分离鉴定及脱氮效果研究[J]. 水产科学, 2020, 39(2): 265-270. doi: 10.16378/j.cnki.1003-1111.2020.02.015
    [13] 罗固源, 汤丽娟, 许晓毅, 等. 好氧反硝化菌筛选及强化OGO反应器脱氮的研究[J]. 中国给水排水, 2010, 26(1): 16-19. doi: 10.19853/j.zgjsps.1000-4602.2010.01.006
    [14] 陈静, 龚艳华. 一种用于处理氨氮污水的生物制剂及其制备方法: 104630101B[P]. 2015-05-20.
    [15] 曹煜成, 胡晓娟, 文国樑, 等. 一种净化海水池塘养殖尾水中无机氮磷的赤红球菌HDRR2Y及其应用: 111471612A[P]. 2020-07-31.
    [16] 屈晓伟, 李艳宾, 张琴. 分段调控pH值对阴沟肠杆菌WL1318发酵棉秆水解糖液产氢的影响[J]. 中国酿造, 2018, 37(5): 157-161. doi: 10.11882/j.issn.0254-5071.2018.05.030
    [17] 王楠, 尹纪元, 王英英, 等. 草鱼源乳酸菌的分离鉴定及其生物学特性研究[J]. 南方水产科学, 2021, 17(6): 74-84. doi: 10.12131/20210039
    [18] 汪伟, 蔡海波, 谭文松. pH调控方式和温度对透明质酸发酵过程的影响[J]. 现代食品科技, 2019, 35(8): 207-213. doi: 10.13982/j.mfst.1673-9078.2019.8.030
    [19] 毛青钟, 胡金凤. 机制元红酒发酵过程优势细菌形态不同对其质量影响的研究[J]. 酿酒, 2012, 39(6): 50-54. doi: 10.3969/j.issn.1002-8110.2012.06.018
    [20] 周丽英, 叶仁杰, 林淑婷, 等. 水稻根际耐镉细菌的筛选与鉴定[J]. 中国生态农业学报, 2012, 20(5): 597-603.
    [21] 孙磊, 宋彤彤, 朱珍妮, 等. 可降解三乙胺的赤红球菌S6-2的筛选与鉴定及降解特性[J]. 环境科学研究, 2016, 29(12): 1882-1886. doi: 10.13198/j.issn.1001-6929.2016.12.17
    [22] 刘元利, 刘猛, 周敏, 等. 一株石油降解赤红球菌(Rhodococcus rubber)特性及处理含油废水研究[J]. 环境科学学报, 2016, 36(10): 3651-3657.
    [23] 张金宝, 李凤梅, 郭书海, 等. 高分子量多环芳烃降解菌筛选及在土壤电动-生物修复中应用[J]. 生态学杂志, 2020, 39(1): 260-269. doi: 10.13292/j.1000-4890.202001.002
    [24] 赵盼盼, 杨玉盛, 周嘉聪, 等. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响[J]. 生态学报, 2019(8): 2676-2686.
    [25] 谭杰, 董滨, 戴晓虎. 温度对生物膜—活性污泥复合工艺硝化特性及硝化菌种群的影响[J]. 净水技术, 2016, 35(2): 21-25. doi: 10.3969/j.issn.1009-0177.2016.02.005
    [26] 魏小涵, 毕学军, 尹志轩, 等. 温度和DO对MBBR系统硝化和反硝化的影响[J]. 中国环境科学, 2019, 39(2): 612-618. doi: 10.3969/j.issn.1000-6923.2019.02.021
    [27] 王晓明, 王杰. 进水氨氮负荷对污水处理中硝化作用的影响[J]. 净水技术, 2017, 36(12): 90-93. doi: 10.15890/j.cnki.jsjs.2017.12.016
    [28] 牟春艳. 硝化细菌的培养及其对养鱼池水中氨氮的去除作用[C]//中国畜牧兽医学会. 第七届中国畜牧科技论坛论文集. 北京: 中国农业出版社, 2016: 382.
    [29] WAN C, LI Z, SHEN Y, et al. Alternating nitrogen feeding strategy induced aerobic granulation: influencing conditions and mechanism[J]. J Environ Sci (China), 2021, 109: 135-147. doi: 10.1016/j.jes.2021.03.044
    [30] TOMAR S K, CHAKRABORTY S. Effect of air flow rate on development of aerobic granules, biomass activity and nitrification efficiency for treating phenol, thiocyanate and ammonium[J]. J Environ Manage, 2018, 219: 178-188. doi: 10.1016/j.jenvman.2018.04.111
    [31] 胡鹏, 杨庆, 杨泽凡, 等. 水体中溶解氧含量与其物理影响因素的实验研究[J]. 水利学报, 2019, 50(6): 679-686. doi: 10.13243/j.cnki.slxb.20190108
    [32] 马宁宁. 开孔文丘里管掺气水流的水力和增氧特性研究[D]. 青岛: 中国海洋大学, 2015: 48.
    [33] 刘玉沛. 赤红球菌与小球藻互生关系对苯酚降解影响的研究[D]. 秦皇岛: 燕山大学, 2015: 25.
    [34] 祁自忠, 杨匡, 程成, 等. 固定化硝化菌群联合芽孢杆菌处理对虾养殖废水[J]. 微生物学通报, 2018, 45(9): 1922-1939. doi: 10.13344/j.microbiol.china.180358
    [35] 刘宗跃, 杨宏, 王少伦, 等. 硝化细菌工业化快速富集[J]. 化工学报, 2020, 71(8): 3722-3729.
    [36] 徐寒莉, 梁志伟, 毛巍, 等. 盐分对生物脱氮工艺中硝化反应的影响与机理[J]. 应用生态学报, 2014, 25(7): 2132-2140. doi: 10.13287/j.1001-9332.2014.0138
    [37] 郭姿璇, 王群, 佘宗莲. 盐度对未驯化微生物活性的影响[J]. 中国环境科学, 2017, 37(1): 181-187. doi: 10.3969/j.issn.1000-6923.2017.01.023
    [38] 陈天宇, 刘元国, 蔡存远, 等. 微生物盐驯化对含盐污水除氮性能的提升研究[J]. 给水排水, 2019, 45(9): 19-24. doi: 10.13789/j.cnki.wwe1964.2019.09.004
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  53
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 修回日期:  2022-06-13
  • 录用日期:  2022-07-19
  • 网络出版日期:  2022-07-27
  • 刊出日期:  2023-02-03

目录

    /

    返回文章
    返回