Effect of low-temperature acclimation on survival, non-specific immune and antioxidant indexes of Epinephelus fuscoguttatus ♀×E. lanceolatus ♂
-
摘要: 探究珍珠龙胆石斑鱼 (Epinephelus fuscoguttatus ♀×E. lanceolatus ♂) 最佳暂养温度,可为该鱼的保活流通提供理论依据。以0.5~1.0 ℃·h−1的速率将石斑鱼的暂养水温降至24、20、18和16 ℃,观察降温过程中石斑鱼的生理反应,测定暂养过程中的水质变化及鱼体保活时间、非特异性免疫和抗氧化等指标。结果显示,在24~16 ℃时石斑鱼的存活时间随暂养温度的降低呈上升趋势,水温维持在16 ℃时,水体中总氨氮 (TAN) 质量浓度增速较缓,鱼体存活时间最长 (109 h)。不同水温下暂养48 h后,鱼体非特异性免疫和抗氧化能力均受到不同程度的影响。与暂养前相比,16 ℃组石斑鱼血清非特异性免疫指标中补体蛋白3 (C3)、球蛋白 (GLB) 和总蛋白 (TP) 质量浓度显著上升,其余指标均无显著变化;肝脏组织中超氧化物歧化酶 (SOD) 和过氧化氢酶 (CAT) 活性显著升高,谷胱甘肽过氧化物酶 (GPx) 活性显著降低,但明显高于其他温度组,丙二醛 (MDA) 水平显著低于其他温度组。16 ℃暂养不仅能保持较好的水质,同时也能降低鱼体代谢水平,维持机体内环境稳态,从而降低氧化应激反应造成的损伤,适合作为珍珠龙胆石斑鱼的暂养和运输温度。Abstract: Investigating the best acclimation temperature conditions for Epinephelus fuscoguttatus ♀×E. lanceolatus ♂ can provide a theoretical basis for its survival and circulation. We decreased the water temperature to 24, 20, 18 and 16 ℃ at the rate of 0.5−1.0 ℃·h−1, then recorded the physiological responses and survival time, as well as the changes of water quality, non-specific immune index and antioxidant indicator. The results show that the survival time of the grouper increased with the decrease of temperature within the range of 24−16 ℃. When the water temperature was maintained at 16 ℃, the concentration of total ammonia nitrogen (TAN) increased slowly, and the survival time was the longest, up to 109 h. The non-specific immune and antioxidant parameters changed after the grouper being cultured at different temperatures for 48 h. Compared with the control group, the contents of complement protein 3 (C3), globulin (GLB) and total protein (TP) increased in 16 ℃ group significantly, while the other indexes had no significant changes. The activities of superoxide dismutase (SOD) and catalase (CAT) in the liver tissue in 16 ℃ group increased significantly. However, the activity of glutathione peroxidase (GPx) decreased significantly, but higher than those of the other temperature groups. Compared with the other temperature treated groups, the content of malondialdehyde (MDA) decreased significantly. Thus, 16 ℃ temporary culture can not only maintain good water quality, but also reduce the metabolic level of fish and maintain the homeostasis of internal environment, so as to reduce the damage caused by oxidative stress reaction. It is suitable for temporary culture and transportation of Epinephelus fuscoguttatus ♀×E. lanceolatus ♂.
-
表 1 不同温度下珍珠龙胆石斑鱼的呼吸频率及行为特征
Table 1. Respiratory frequency and behavioral characteristics of grouper at different temperatures
温度
Temperature/
℃呼吸频率
Respiratory
frequency/
(次·min−1)行为描述
Behavioral
characteristics25 52~55 鳃盖开合明显,呼吸规律,对外部刺激反应灵敏 22 47~50 20 31~33 鳃盖开合幅度减弱,对外部刺激反应
灵敏19 28~30 18 25~26 基本不游动 16 20~23 鳃盖开合微弱,呼吸非常缓慢,对外部刺激反应迟钝 15 18~22 14 16~18 鱼体失去平衡左右倾斜,部分出现浮头行为,体表脱落物增加 13 10~12 鱼体侧翻,出现剧烈的应激反应 12 9~10 鱼体平躺于水底,呼吸频率极不规律,出现裂鳃,并开始出现死亡 -
[1] FAUDZI N M, YONG A S K, SHAPAWI R, et al. Soy protein concentrate as an alternative in replacement of fish meal in the feeds of hybrid grouper, brown-marbled grouper (Epinephelus fuscoguttatus) × giant grouper (E. lanceolatus) juvenile[J]. Aquac Res, 2017, 49(1): 431-441. [2] REFAEY M M, TIAN X, TANG R, et al. Changes in physiological responses, muscular composition and flesh quality of channel catfish Ictalurus punctatus suffering from transport stress[J]. Aquaculture, 2017, 478: 9-15. doi: 10.1016/j.aquaculture.2017.01.026 [3] 曹杰, 王琪, 梅俊, 等. 有水与无水保活运输对大菱鲆生理应激及鱼肉品质的影响[J]. 水产学报, 2021, 45(7): 1034-1042. [4] 王彩霞, 白婵, 李宁, 等. 不同降温速率休眠的加州鲈无水保活品质比较[J]. 现代食品科技, 2020, 36(5): 129-137,41. [5] 秦旭. 彭泽鲫的低温休眠保活运输技术研究[D]. 南昌: 南昌大学, 2018: 15-22. [6] 徐子涵. 南美白对虾的无水低温胁迫响应和无水保活运输装置[D]. 杭州: 浙江大学, 2018: 16-33. [7] 郭鹤. 温度驯化对齐口裂腹鱼热耐受和生长代谢的影响[D]. 重庆: 西南大学, 2019: 36-51. [8] 王海华, 康升云, 王梦杰, 等. 攀鲈形态特征及耐寒性能研究[J]. 江西水产科技, 2021(4): 11-15. doi: 10.3969/j.issn.1006-3188.2021.04.006 [9] 储天琪. 小黄鱼温度应激相关基因鉴定及表达研究[D]. 舟山: 浙江海洋大学, 2021: 6-7. [10] 王妤, 宋志明, 刘鉴毅, 等. 点篮子鱼幼鱼的热耐受特征[J]. 海洋渔业, 2015, 37(3): 253-258. doi: 10.3969/j.issn.1004-2490.2015.03.007 [11] 金慧, 赵城, 魏琳婷, 等. 气相分子吸收光谱法测定渔业水质中氨氮含量方法的建立[J]. 中国渔业质量与标准, 2021, 11(4): 23-30. doi: 10.3969/j.issn.2095-1833.2021.04.004 [12] 范秀萍, 张家胜, 郭侨玉, 等. 珍珠龙胆石斑鱼CO2麻醉无水保活效果的因素影响[J]. 广东海洋大学学报, 2021, 41(6): 73-81. doi: 10.3969/j.issn.1673-9159.2021.06.009 [13] 蔡润佳, 张静, 黄建盛, 等. 低温胁迫对军曹鱼幼鱼脂代谢相关生理生化的影响[J]. 广东海洋大学学报, 2021, 41(3): 123-130. doi: 10.3969/j.issn.1673-9159.2021.03.016 [14] 管敏, 张厚本, 王龙, 等. 急性低温胁迫对史氏鲟幼鱼抗氧化和免疫指标的影响[J]. 淡水渔业, 2018, 48(6): 17-22. doi: 10.3969/j.issn.1000-6907.2018.06.003 [15] 程鹏丽, 胡瑞芹, 李根芳, 等. 低温胁迫下斑马鱼胚胎成纤维细胞 (ZF4) 应激颗粒的探究[J]. 生物学杂志, 2020, 37(4): 40-44. doi: 10.3969/j.issn.2095-1736.2020.04.040 [16] 区又君, 刘奇奇, 温久福, 等. 急性低温胁迫对四指马鲅幼鱼肝脏、肌肉以及鳃组织结构的影响[J]. 生态科学, 2018, 37(5): 53-59. [17] CHANG C H, LIN J Y, LO W Y, et al. Hypothermal stress induced differential expression profiles of the immune response gene, warm-temperature-acclimation associated 65-kDa protein (Wap65), in the liver of fresh water and seawater milkfish, Chanos chanos[J]. Fish Shellfish Immunol, 2017, 70: 174-184. doi: 10.1016/j.fsi.2017.09.012 [18] 袁新程, 蒋飞, 施永海, 等. 高温胁迫对美洲鲥1+龄鱼种抗氧化与非特异性免疫相关指标的影响[J]. 浙江大学学报 (农业与生命科学版), 2021, 47(1): 107-117. [19] 谢妙. 低温胁迫对斜带石斑鱼生理、生化、脂肪酸的影响[D]. 湛江: 广东海洋大学, 2012: 18-26. [20] 陈智. 低温胁迫对荷那龙罗非鱼血液生理生化指标的影响[D]. 湛江: 广东海洋大学, 2011: 66-72. [21] 王利娟. 大口黑鲈保活运输的研究[D]. 上海: 上海海洋大学, 2015: 14-18. [22] GUO J S, WU P H, CAO J L, et al. The PFOS disturbed immunomodulatory functions via nuclear Factor-κB signaling in liver of zebrafish (Danio rerio)[J]. Fish Shellfish Immunol, 2019, 91: 87-98. doi: 10.1016/j.fsi.2019.05.018 [23] 孙学亮, 邢克智, 陈成勋, 等. 急性温度胁迫对半滑舌鳎血液指标的影响[J]. 水产科学, 2010, 29(7): 387-392. doi: 10.3969/j.issn.1003-1111.2010.07.002 [24] 李波, 樊启学, 杨凯, 等. 慢性氨氮胁迫对黄颡鱼摄食、生长及血液指标的影响[J]. 应用与环境生物学报, 2011, 17(6): 824-828. [25] ZHAO J H, ZHU Y J, HE Y F, et al. Effects of temperature reduction and MS-222 on water quality and blood biochemistry in simulated transport experiment of largemouth bronze gudgeon, Coreius guichenoti[J]. J World Aquac Soc, 2014, 45(6): 493-507. [26] 夏斌鹏, 刘哲, 周彦静, 等. 慢性热应激对虹鳟部分血清非特异性免疫指标的影响[J]. 农业生物技术学报, 2017, 25(7): 1078-1085. [27] 谭连杰, 林黑着, 黄忠, 等. 当归多糖对卵形鲳鲹生长性能、抗氧化能力、血清免疫和血清生化指标的影响[J]. 南方水产科学, 2018, 14(4): 72-79. doi: 10.3969/j.issn.2095-0780.2018.04.009 [28] 贾贝贝. 牙鲆 (Paralichthys olivaceus) 两个重要补体因子C3和Factor I的功能研究[D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2020: 1-8. [29] 王志平, 张士璀, 王光锋. 鱼类补体系统成分及补体特异性和功能的研究进展[J]. 水生生物学报, 2008, 32(5): 760-769. [30] GENG R J, JIA Y Y, CHI M L, et al. RNase1 alleviates the Aeromonas hydrophila-induced oxidative stress in blunt snout bream[J]. Dev Comp Immunol, 2019, 91: 8-16. doi: 10.1016/j.dci.2018.09.018 [31] GE H X, LIANG X F, LIU J L, et al. Effects of acute ammonia exposure on antioxidant and detoxification metabolism in clam Cyclina sinensis[J]. Ecotox Environ Safe, 2021, 211: 111895. doi: 10.1016/j.ecoenv.2021.111895 [32] WANG L, LI X L, LU K L, et al. Dietary hydroxyl methionine selenium supplementation enhances growth performance, antioxidant ability and nitrite tolerance of Litopenaeus vannamei[J]. Aquaculture, 2021, 537: 736513. doi: 10.1016/j.aquaculture.2021.736513 [33] LONG S S, DONG X H, TAN B P, et al. Growth performance, antioxidant ability, biochemical index in serum, liver histology and hepatic metabolomics analysis of juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus) fed with oxidized fish oil[J]. Aquaculture, 2021, 545: 737261. doi: 10.1016/j.aquaculture.2021.737261 [34] YAN X B, CHEN Y, DONG X H, et al. Ammonia toxicity induces oxidative stress, inflammatory response and apoptosis in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu)[J]. Front Mar Sci, 2021, 8: 667432. doi: 10.3389/fmars.2021.667432 [35] GAO X Q, FEI F, HUANG B, et al. Alterations in hematological and biochemical parameters, oxidative stress, and immune response in Takifugu rubripes under acute ammonia exposure[J]. Comp Biochem Physiol C, 2021, 243: 108978. [36] 戚晓舟. 氨氮胁迫对鲫免疫系统及肠道菌群结构的影响[D]. 杨凌: 西北农林科技大学, 2017: 2-6. [37] CHENG C H, YANG F F, LING R Z, et al. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus)[J]. Aquat Toxicol, 2015, 164: 61-71. doi: 10.1016/j.aquatox.2015.04.004 [38] CAO S P, ZHAO D F, HUANG R, et al. The influence of acute ammonia stress on intestinal oxidative stress, histology, digestive enzymatic activities and PepT1 activity of grass carp (Ctenopharyngodon idella)[J]. Aquac Rep, 2021, 20: 100722. [39] 崔前进, 尚胜男, 蔡忠璐, 等. 盐度、温度和体质量对钝吻黄盖鲽幼鱼排氨率和耗氧率的影响[J]. 上海海洋大学学报, 2018, 27(1): 64-72. doi: 10.12024/jsou.20170402023 [40] 付监贵, 张振早, 李彩娟, 等. 温度对不同体质量梭鲈幼鱼耗氧率、排氨率及窒息点的影响[J]. 水产养殖, 2018, 39(10): 18-22. doi: 10.3969/j.issn.1004-2091.2018.10.005 [41] 胡发文, 王晓龙, 高凤祥, 等. 温度、盐度和两种麻醉剂对大泷六线鱼幼鱼耗氧率、排氨率的影响[J]. 海洋科学, 2021, 45(1): 54-61. [42] 罗国芝, 吴慧芳, 谭洪新. 自养硝化过程去除循环水养殖系统水体中氨氮的研究进展[J]. 淡水渔业, 2019, 49(2): 78-83. -